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Abstract
This paper is concerned with the development, testing,
and optimization of a machine learning method for
controlling the production of precast reinforced con-
crete components. A discussion is given identifying
the unique challenges associated with achieving pro-
duction efficiency in the construction industry, name-
ly: uncertain and sporadic demand for work; high cus-
tomization of the design of components; a need to pro-
duce work to order; and little prospect for stockpil-
ing work. This is followed by a review of the methods
available to tackle this problem, which can be divided
into search-based techniques (such as heuristics) and
experience-based techniques (such as artificial neur-
al networks). A model of an actual factory for pro-
ducing precast reinforced concrete components is then
described, to be used in the development and testing
of the controller. A reinforcement learning strategy is
proposed for training a deep artificial neural network
to act as the control policy for this factory. The ability
of this policy to learn is evaluated, and its performance
is compared to that of a rule-of-thumb and a random
policy for a series of testing production runs. The re-
inforcement learning method developed an effective
and reliable policy that significantly outperformed the
rule-of-thumb and random policies. An additional se-
ries of experiments were undertaken to further opti-
mize the performance of the method, ranging the num-
ber of input variables presented to the policy. The pa-
per concludes with an indication of proposed future re-
search designed to further improve performance and to
extend the scope of application of the method.

1 Introduction
Factory-based construction manufacturing has the po-
tential to overcome many of the inefficiencies of tradi-
tional on-site methods. However, achieving production
efficiency in a construction factory is usually more
challenging than for other manufacturing industries.
This is because construction work does not lend itself
to the methods of mass production. Work arrives in
batches at irregular intervals with large fluctuations in
demand, the work can be diverse in design both be-
tween and within batches, and the products are rarely
reproduced. Consequently, work has to be made to
order with little or no potential for stockpiling, and
with large variations in the demand for productive re-
sources.

Controlling construction operations (such as se-
lecting the next job in a queue to be processed) is un-
likely to be achieved optimally by simple manually
crafted rules, given the complexities of construction
demand. A more sophisticated rule system, taking into
account a wide range of system situations and out-
comes, is required. A promising approach to this prob-
lem is machine learning (ML), whereby an artificial
intelligence (AI) agent uses a deep artificial neural
network (DANN) to control operations. These agents
would act like an advisor in a human-in-the-loop sys-
tem, or as a controller in an automated system, gener-
ating solutions whenever an operational decision is re-
quired.

The use of AI-based decision agents to control op-
erations in construction is limited. Shitole et al. (2019)
developed an AI agent for optimizing a simulated
earth-moving operation based on artificial neural net-
works (ANNs) trained using reinforcement learning
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(RL), and found it outperformed previously published
manually crafted heuristics. RL is a broad class of
learning techniques based on discovery and rewards
that has demonstrated much success in recent years
(Sutton & Barto, 2018). Their earth-moving system
comprised two excavators serving a fleet of dump-
trucks. The function of the AI agent was to direct the
trucks to one or other of the excavators at a junction in
the return road, with the goal of optimizing the over-
all production rate of the system. An issue with this
approach to process control is its lack of extensibility.
That is, the AI agent can only be applied to the earth-
moving system considered in the study. Applying the
AI agent to a new situation with a different site layout
and/or equipment combination would require retrain-
ing. Although this could be achieved prior to the start
of the new construction operation, it would neverthe-
less be a significant burden on pre-construction plan-
ning. Clearly, there is a need for more work in the area
of ANN extensibility.

An alternative application area to site-based con-
struction, with more immediate application given cur-
rent AI technology, is factory centered manufactured
construction. In this situation, the life-span of an AI
agent should be relatively long, lasting at least until
any reconfiguration of the factory system is required
or a change occurs in its operating environment. This
study is focused on factory-based construction man-
ufacture, specifically for precast reinforced concrete
(PRC) component production.

Optimization of customized PRC component pro-
duction has been considered by several researchers
(Leu & Hwang, 2001; Chan & Hu, 2002; Benjaoran &
Dawood, 2005), using genetic algorithms (GAs) to im-
prove production performance. Although the approach
was shown to be successful, heuristic search methods
such as GAs are computationally expensive. There-
fore, they are not well suited to situations where deci-
sions have to be made in real-time.

RL solutions based on a learned model, such as
that developed by Shitole et al. (2019), will generate
rapid solutions to a decision problem, once trained.
A number of authors have applied this method to the
control of factory operations (Waschneck et al., 2018;
Zhou et al., 2020; Xia et al., 2021) and found results
to be promising when compared to more conventional
approaches such as rule-of-thumb decision techniques.
Unfortunately, applications have been outside con-
struction manufacturing, and therefore do not address
many of the challenges of this industry (such as un-
certainty in the arrival of jobs, size of the batches,
processing time, and design of the products), although
Waschneck et al. (2018) did consider some level of
product customization within the semiconductor in-
dustry.

This paper presents a more detailed analysis and
extension to the work by Flood & Flood (2022) pub-
lished in the proceedings of the 12th International
Conference on Simulation and Modeling Methodolo-

gies, Technologies and Applications, Lisbon. The Lis-
bon paper performed a proof-of-concept on the via-
bility of using an RL trained DANN to control facto-
ry-based manufacture of PRC components, given the
unique demands of the construction industry. This pa-
per goes beyond that proof-of-concept to: (a) model a
real PRC component factory using data published by
Wang et al. (2018); (b) extend the depth and scope of
the performance experiments and their analyses; and,
(c) add new research investigating the impact on per-
formance of increasing the choices made available to
the DANN-based decision agent.

2 Factory-Based Production Control

2.1 Decision Agents
The future track followed by a construction manufac-
turing system is determined by both controllable and
uncontrollable events. The controllable events provide
an opportunity to steer this track along a line that is fa-
vorable to the manufacturer, optimizing performance
in terms of, say, productivity and/or profit. This is
achieved through the selection of an appropriate se-
quence of decisions wherever options exist. Examples
of such decisions include prioritizing jobs in a queue,
deciding when to take an item of equipment offline for
maintenance, and selecting the number of machines to
allocate to a process.

These decisions are made by one or more agents,
as illustrated in Figure 1, that operate dynamically
throughout the life of the manufacturing system. An
agent monitors relevant variables defining the state of
the system and its environment, S, (both current and
possibly past states, and even predictions about future
states) then uses these insights to decide on appropri-
ate future actions to implement. Typically, these ac-
tions will concern events in the immediate future (giv-
en that the most relevant, accurate, and valuable infor-
mation is available at the time of the decision) but can
also be applied to events later in the future for deci-
sions that have a long lead time, such as the purchase
of resources.

An important dichotomy of decision agents is
search-based versus experience-based systems.
Search-based agents, which include blind and heuristic
methods, use a systematic exploration of the solution
space looking for the best action attainable. They tailor
a solution to the specific instance of the problem at
hand. As such, they may find better optimized so-
lutions than experience-based agents, although that
needs to be tested. Search-based agents are also highly
extensible, meaning they can be easily adapted to new
versions of the problem. A shortcoming is that they
can be computationally expensive and thus not suited
to situations requiring real-time rapid decision making.

In contrast, experience-based agents, which in-
clude rules-of-thumb and ANNs, make decisions
based on exposure to similar situations from the past.
Once developed, an experience-based agent can output
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Figure 1. Dynamic system control by a decision agent.

decisions rapidly. However, because the solutions they
offer are generic rather than tailored to each situation,
their decisions may not be as well optimized as those
of search-based agents. Furthermore, experience-
based agents tend to lack extensibility; each new ver-
sion of the problem requires redevelopment of the
agent, which in turn requires the acquisition and as-
similation of large volumes of new information on sys-
tem behavior.

A hybrid of these agent types is also possible. For
example, an experience-based agent can be used to
make the first attempt at a solution and then a search-
based agent can be used to improve on this result.
Conversely, a search-based agent could be used to
acquire examples for development of an experience-
based agent.

A longer term objective for this study is to quantify
and compare the benefits of search-based and experi-
ence-based approaches to controlling construction pro-
duction systems. This paper, however, focuses on ex-
perience-based approaches applied to factory-based
construction manufacturing. Two experience-based
methods are considered, a rule-of-thumb and a DANN,
representing two extremes in functional complexity.
DANNs are variants of ANNs that include multiple
hidden layers or recursion between units. The addi-
tional structure offers a corresponding increase in
functional complexity, although model development
has additional challenges. Although a DANN is an ex-
perience-based approach, its development will involve
the use of search techniques to gather good training so-
lutions, specifically using RL techniques. The rule-of-
thumb and the DANN are compared to a random de-
cision making method used as a performance bench-
mark.

2.2 DANN Development Strategies
For a construction manufacturing environment, opti-

mal solutions to decision problems are not easily at-
tained a priori or from direct observation of the real
system. This excludes the direct use of supervised
training techniques for development of the DANN.
There are many ways around this problem, including
using a strategy of hindsight whereby the agent ex-
plores alternative decision tracks in a simulation envi-
ronment, then selects those that are most successful,
effectively learning by trial-and-error.

For DANNs, there are two broad approaches to
hindsight model development. The first is to explore
adjustments to the structure and/or weights of the mod-
el directly, and to select those that result in a better per-
forming decision track. This is in effect an evolution-
ary method (see, for example, Iba & Noman (2020),
and was the basic strategy investigated by Flood
(1989) for selecting sequences for construction jobs in
an offline optimization problem. The second approach
is to explore adjustments to the output from the model,
then to evaluate their impact on the performance of the
decision track and to feed this back to the model in a
supervised manner. This was the approach adopted for
this study, and can be classified as a RL method.

3 Modeling
A key function of RL is the exploration of alternative
decision tracks and their impact on the performance of
the system. This experience is used to shape the deci-
sions made by the agent, mapping from system state to
action. This mapping is referred to as the decision pol-
icy.

In construction production (including factory-
based construction manufacturing) it is not practicable
to experiment with alternative decision policies using
the real system. Construction work is rarely repro-
duced making it almost impossible to compare the
effectiveness of alternative strategies. Artificially re-
producing work is also not viable given the cost and
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Figure 2. Historic track of the real system followed by simulated alternative future tracks of the sys-
tem.

time required to manufacture a construction compo-
nent. One way around this problem is to build a sim-
ulation model of the construction production system,
and then to use this to experiment with alternative poli-
cies. This concept is illustrated in Figure 2, where the
blue line represents the historic track taken by the real
system, and the orange lines represent alternative fu-
ture tracks explored by different policies in a simulat-
ed version of the system. Information about the real
system and its past behavior would be used to devel-
op and validate the simulation model. The information
gathered from the simulated system are used to devel-
op and test (validate) the policy, as described in Sec-
tion 4.

3.1 Production Simulator
Figure 3 shows a schematic model of the production
system considered for this study, representing the man-
ufacture of PRC components such as walls, floors,
beams, and column units. The system and its process
duration data were obtained from the study published
by Wang et al. (2018). This study was chosen because
it captures the challenging and unique features of con-
struction manufacturing, namely:

• orders arrive in a sparse random manner, must be
made to order and cannot be stockpiled;

• each order consists of a batch of components vari-
able in number;

• many if not all components are unique in design
both within a batch and between batches, and
therefore have variable handling times at each
process;

• all components have uncertainty in the handling
times at each process; and

• all components must be delivered by a given date
in accordance with a site assembly schedule.

In addition, the following assumptions were made
about the system:

• the processes are executed sequentially by all
components, in the order shown in Figure 3;

• the arrival of orders is considered to be a Poisson
process, with an arrival rate, λ (the average num-

ber of order arrivals per unit of time), selected so
that the work demand would slightly exceed the
maximum throughput of the system (see Section
5 for the selection of this value);

• incoming orders consist of a batch of PRC com-
ponents, the number of which is sampled from a
positively skewed triangular distribution (round-
ed to a positive integer), with parameters chosen
to generate a large variance in demand;

• on-site delivery of a PRC component is measured
as a contingency time beyond the sum of the com-
ponent's process duration, and is also sampled
from a triangular distribution;

• work proceeds 24 hours per day without breaks;
• each process has only sufficient resources to

serve one component at a time, except the Cure
process which can handle an unlimited number of
components; and

• curing time is considered to be the same for all
PRC components.

The stochastic time related data used for this study, in-
cluding their distribution types, are given in Table 1.
The dynamics of the system are given by the relative
values of these data (rather than by their absolute val-
ues) and therefore time units are not included. The tri-
angular distribution was adopted because it is compu-
tationally inexpensive and yet provides a versatile way
of approximating a wide range of distribution shapes,
including those with skew.

3.2 Policy Types Considered
The control of the system is undertaken by a decision
agent as shown in Figure 3. Whenever a vacancy arises
at a process, the agent will select a PRC component
for processing from the corresponding queue, using its
current policy. Three alternative types of policy were
considered:

1. A random policy in which the PRC component
is selected from a queue using a uniformly dis-
tributed random variate. This was included as a
performance benchmark for comparison with the
other policies.
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Figure 3. Production model for precast reinforced concrete (PRC) components.

Table 1. Modeling the event, quantity, and durations of production variables.

System Variable Form of Uncertainty Parameters

Order arrival time Poisson process
Arrival rate (λ)

1
7,000

Batch size Discretized triangular distribution Min Mode Max
1 20 100

Rebar durations Triangular distribution Min Mode Max
120 200 250

Forms durations Triangular distribution Min Mode Max
130 150 170

Concrete duration Triangular distribution Min Mode Max
0 50 70

Cure duration Fixed ~

Strip duration Triangular duration Min Mode Max
80 100 120

Delivery duration Triangular distribution Min Mode Max
30 50 70

Contingency time relative to site assembly time Triangular distribution Min Mode Max
10 100 200

2. A rule-of-thumb policy in which the PRC com-
ponent with the least remaining contingency time

in the queue is selected. Note, negative contin-
gencies (delays) are possible. This type of policy
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Figure 4. Structure of the DANN.

was included as a performance benchmark for
comparison with the DANN policy.

3. A DANN policy developed using the RL method
described in Section 4. The selection of a PRC
component from a queue is based on system state
information. Preliminary experiments indicated
that a policy was only effective where bottlenecks
formed in the system, in this case at the Rebar
queue. Therefore, the DANN policy was only im-
plemented for Rebar, and all other queues revert-
ed to the rule-of-thumb policy.

3.3 DANN Structure
The DANN has a layered feedforward structure as
shown in Figure 4.

3.3.1 Input Layer

The input layer receives both temporal and spatial in-
formation about the state of the system and the work
to be completed. The input values specify the process
durations and the remaining contingencies for the PRC
components currently in the queue under considera-
tion. These data are normalized at the input for each
process. The location of the values at the input in-
dicates the position in the queue, and the relevant
process.

An issue with this approach stems from the fact
that the structure of the inputs to the DANN is fixed
(DANNs are structurally rigid) yet the number of PRC
components in the system that need to be evaluated is
variable. To get around this, the DANN was designed
to allow up to a stipulated number (N) of PRC com-
ponents to be evaluated in each queue: if the number
of PRC components in a queue is less than N then the
spare input values are set to 0.0; and if the number of
PRC components in a queue is greater than N then on-
ly the first N PRC components will be evaluated. Fur-
thermore, the N PRC components evaluated are those
with the least contingency, and in this sense the DANN
is a hybrid with the rule-of-thumb policy. The value of
N used varied between 0 and 30, as detailed in the re-
sults, Section 5.

3.3.2 Hidden Layers

The number of hidden layers was set to 6 and the
number of hidden units per layer was set to 64. These
values were found to have good performance in the
DANN training phase (see Section 4.2) in a prelim-
inary search. A more thorough sensitivity analysis
ranging these parameters is planned for future work.

All hidden units adopted the ReLU (rectified linear
unit) activation function due its computational effi-
ciency and avoidance of the vanishing gradient prob-
lem (Glorot et al., 2011).

3.3.3 Output Layer

The DANNs output layer is where the PRC compo-
nents are selected from the queues for processing. All
output units use a sigmoid activation function, thereby
limiting their activation to values between 0.0 and 1.0.
The output units correspond a position in the queue.
The number of units is equal to N, the number of PRC
components to be evaluated in a queue (see Section
3.3.1). The current length of a queue or N, whichev-
er is smallest, determines the number of units that are
active. The values generated at the active output units
are normalized to sum to 1.0. This allows the output
values to be treated as probabilities for selecting PRC
components from a queue.

The DANN policy has two modes of operation:

• Exploration. This mode is used to steer the sim-
ulation through alternative partially-random
tracks, to gathering high-reward input-output pat-
tern pairs for training the DANN. Monte Carlo
sampling is used to select PRC components based
on the values generated at the relevant output
units. The higher the value generated at an output,
the more likely the corresponding PRC compo-
nent will be selected. The broader strategy adopt-
ed for learning is given in Section 4.

• Implementation. This mode operates by select-
ing a PRC component from a queue based on the
output unit that generates the highest value with-
in its group. The operation is entirely determinis-
tic. It is used to control the simulated system in
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Figure 5. Two phase reinforcement learning DANN development cycle.

non-training mode, to test the performance of the
current policy. In addition, this is the mode that
would be adopted when using the policy to con-
trol the real system.

4 DANN Learning Strategy
DANN development is a deeply nested process, as
shown in Figure 5. The outer level of this process com-
prises two main phases: Phase I, the collection of train-
ing patterns through the exploration of alternative de-
cision tracks; and, Phase II, the training of the DANN.
These phases are cycled through a number of times un-
til learning converges, each occasion using the most
recent version of the DANN to control the simulation.
Each time the system cycles back to Phase I, the simu-
lation is reset to a new starting point. These phases are
described in detail in the following two sections.

4.1 Collection of Training Patterns
Collecting training patterns is undertaken in a series of
stages s, as illustrated in the upper blue section of Fig-
ure 5. Each stage experiments with a predefined num-
ber of trials t simulating the fabrication of a set of
PRC components. The trial with the best production
performance (see Section 4.1.1) is selected for later
training of the DANN, and as the lead-in for the next
stage in the simulation. The training patterns collected
are the mappings from input to output for each state
transition in the selected trial.

This process continues until a specified number
of stages have been completed, each time collecting
training patterns from the best performing trial. For
future studies, parameters that can be investigated in
terms of optimizing performance are the number of
trials per stage, the number of PRC components to

be fabricated per trial (this could be variable between
stages), and the number of stages in the phase.

After completion of this phase, the system moves
to DANN training before returning for another round
of collecting training patterns. The intent is that by cy-
cling between Phases I and II in this manner, the poli-
cy will move towards a better solution incrementally.

4.1.1 Delivery Performance

Delivery performance is measured in terms of delays
to the delivery of PRC components, with smaller de-
lays being more favorable. The cost function used for
training is the root-mean-square (RMS) of these de-
lays, as shown in Equation 1. Note, a PRC component
could be delivered early (indicated by a negative de-
lay) but the square operation would cancel the negative
sign and thereby treat it as an equivalent delay. There-
fore, the delays in this function are offset relative to
a base value to give greater emphasis to actual delays
over early deliveries.

(1)cost = √∑n

i = 1
(di − b)2

n

where

d is the delay for the ith PRC component at its com-
pletion;

n is the number of PRC components completed at
the current trial;

b is the base value against which the delays are off-
set - this value is the maximum contingency time pos-
sible for a PRC component.

4.1.2 Rewards

The learning strategy presented here collects training
patterns based on their success in improving system
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performance. For this reason, a training pattern's out-
put values are modified from that produced by the
DANN to increase the probability of making the same
selection in a similar circumstance. The modification
(a reward) is to move the selected output value closer
to 1.0, and to move the other relevant output values
closer to 0.0, remembering that the output values are
treated as probabilities of selecting a RC component
from the queue. The extent of the modification will be
treated as an experimental hyper-parameter, although
for this study the rewards are set to 0.0 and 1.0 without
any discount.

4.2 DANN Training
The training patterns collected in Phase I are used to
train the DANN, or to further train it in repeat cycles,
as illustrated in the lower orange section of Figure 5.

The DANN was implemented in Python and Py-
Torch (Paszke et al., 2019), using the optimizer RM-
SProp (root-mean-square propagation) and the loss
function MSELoss (mean-squared-error) with reduc-
tion set to mean. Data loading used a mini-batch size
of 64 (with a training set size typically around 2,000
per cycle) with shuffling switched on. The learning
rate was set to 0.001.

Training was conducted until the output from the
loss function had converged, which was typically
within 1,000 epochs. Testing of the system was un-
dertaken after the RL learning cycle had plateaued.
This involved running the simulation in implementa-
tion mode (see Section 3.3.3) using a start point not
used for learning.

5 Results and Discussion
Ideally, there should be a balance between the demand
for work (given by the batch size distribution for or-
ders and their arrival rate, λ) and the factory's maxi-
mum output (determined in part by the handling times
for the processes). An efficient control policy will al-
low this balance to be achieved in an optimal way, ei-
ther by maximizing the amount of work taken-on with-
out causing deliveries to be late, or minimize the num-
ber of productive resources needed to fulfill the de-
mand. This study considers a situation where the de-
mand is slightly in excess of the balance point, and
then compares the performances of the alternative pol-
icy types (give in Section 3.2) to increase delivery per-
formance (as measured in Section 4.1.1). The first ex-
periment was performed to identify the arrival rate, λ,
for orders that would give rise to this level of demand,
given the handling times for the processes shown in
Table 1. Figure 6 shows the results from running the
factory simulation five times using a range of different

order arrival rates (from λ = 1
5,000 to λ = 1

9,000 ). Each

of these five simulations was run until a total of 10,000
individual PRC components were output (an average
of 248 batches of PRC components per simulation
run). Each curve shows the rolling average of the de-

lays for the components across the 10,000 PRC com-
ponent production runs. A rolling mean delay of 1,000,
for example, indicates that on average the PRC com-
ponents are delivered 1,000 time units late up to that
point in the production run. The policy used to control
the system was an untrained DANN. Based on these

results, an order arrival rate of λ = 1
7,000 was selected

as it appeared to create a demand that slightly exceeds
the output from the factory. This is difficult to verify,
however, due to the strong stochastic nature of the sys-
tem's behavior. Future research should check the re-
silience of the DANN policy to changes in the order
arrival rate.

A series of experiments were undertaken to assess
the ability of the DANN to learn an efficient policy for
controlling the PRC production process, to compare its
performance with both the rule-of-thumb and random
policies outlined in Section 3.2, and to test the sensi-
tivity of its performance to varying the number of PRC
components (N) that it evaluates at its input (see Sec-
tion 3.3.1).

5.1 Learning Performance
The first performance experiment was designed to
evaluate the ability of the DANN to learn using the
proposed RL method described in Section 4. The para-
meters selected for the RL process were as follows:

• The number of cycles of Phases I and II was set
to 20 (see Section 4.1, Figure 5) since initial ex-
periments indicated that there was little learning
being accumulated beyond this point.

• The maximum number of PRC components, N, to
be evaluated in a queue by the DANN (see Sec-
tion 3.3.1) was set to 20 since the queue lengths
were rarely found to extend beyond this value for
the system considered. Later, in Section 5.2, re-
sults are presented looking at the relationship be-
tween the value of N and performance.

• During Phase I in the training cycle, training data
was collected over a 2,000 PRC component pro-
duction run, divided into 100 stages of 20 PRC
components each and with 100 trials per stage
(see Section 4.1, Figure 5). Each cycle generated
around 2,000 training patterns. Future work will
investigate the relationship between these para-
meters and performance.

• Following the completion of each cycle, a testing
run of the system was made for a sequence of
8,000 PRC components not used for training.

Figure 7 shows the performance of the DANN control
policy over 20 cycles of the RL method. Performance
is measured as the mean improvement in delivery time
provided by the DANN (using the random policy as
the benchmark, Section 3.2) over a simulated produc-
tion run. The training runs were performed for a se-
quence of 2,000 PRC components (results shown in
orange), while the testing runs were performed for a
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Figure 6. Sensitivity of the rolling delays to changes in the order arrival rate (λ).

Figure 7. Performance of the DANN policy relative to the random policy, over 20 RL cycles.

sequence of 8,000 PRC components (results shown in
blue). Each point in the figure indicates the mean im-
provement at a given stage in the RL cycle. For exam-
ple, the best performance for a training run occurred at
the 3rd RL cycle, where the DANN policy (compared
to the random policy) had a mean improvement in de-
livery time of 36.6 time units per PRC component.

The best version of the DANN should be selected
based on the testing run since it is independent of train-
ing and therefore does not have any potential inherent
bias towards the trained DANN. Thus, for the 20 cy-
cles considered, the best performing DANN was that
generated at the 14th RL cycle, having a mean im-
provement in delivery time of 21.4 time units per PRC
component (about 3.9% of the active processing time
for an average PRC component). Clearly, in this re-
gard, the DANN outperformed the random policy.

Figure 7 indicates that there is significant stochas-
tic variance in the performance of the DANN over
the RL cycles. For this reason, the linear trends for
the two curves were also plotted on the figure. These

trend lines indicate that both training and testing per-
formance would likely improve if additional RL cycles
were undertaken. The apparent positive trend for the
testing performance suggests that the DANN is cur-
rently undertrained. The difference in the height of the
two trend lines is to be expected, and is probably due
to innate bias in the DANN to the data on which it was
trained.

Figure 8 shows a similar plot to that of Figure
7, except that the performance of the DANN is mea-
sured using the rule-of-thumb policy as the benchmark
rather than the random policy. The conclusions drawn
from Figure 8 are similar to those from Figure 7, with
the best version of the DANN being generated at the
14th RL cycle (according to the testing data), and with
the DANN outperforming the rule-of-thumb policy, in
this case by 23.2 time units per PRC component.

Figure 9 compares the performances of the rule-
of-thumb policy and DANN policy at different RL cy-
cles, using the random policy as the benchmark. The
lines indicate the rolling mean improvement in deliv-
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Figure 8. Performance of the DANN policy relative to the rule-of-thumb policy, over 20 RL cycles.

ery time, with the dashed green line representing the
rule-of-thumb policy, the gray lines representing the
DANN policy at various RL cycles, and the black line
representing the best performing DANN policy. The
lowest gray line in the figure represents the DANN
policy before it underwent any training. The best per-
forming DANN is that generated at RL cycle 14 as
noted earlier.

Figure 9a shows the relative performances of the
specified policies over the 2,000 training PRC compo-
nent run. The most significant point on this graph is
at the 2,000th PRC component as that indicates per-
formance based on all the training data. Figure 9b
shows the same but for 2,000 testing PRC components,
taken from the middle of an 8,000 PRC component
run. Looking at Figure 9b, it is clear that the best
DANN policy significantly outperformed the rule-of
thumb policy for most of the plot. However, around
the 4,400 PRC components location, the rule-of-thumb
policy accumulated large gains that briefly took it be-
yond the performance of the best DANN policy. In-
deed, whenever the DANN policy and rule-of-thumb
policies experienced large peaks in performance, it ap-
pears the rule-of-thumb policy improved more quick-
ly. This suggests that more training of the DANN may
be beneficial in the scenarios that lead to these peaks.

Figure 10 presents the same testing results as Fig-
ure 9b but with the DANN's performance bench-
marked against the rule-of-thumb policy indicated by
the dashed green line. This shows more clearly the rel-
ative performances of the DANN and rule-of-thumb
policies. The best DANN policy tends to hover around
a 14 to 15 time unit per PRC component advantage
over the rule-of-thumb policy, but with occasion dips
in relative performance.

5.2 Performance Dependence on the Num-
ber of PRC Components Sampled by the
DANN
The experiments detailed in the previous section rep-

resent the initial formal training of the DANN, utiliz-
ing values for adjustable parameters selected based on
the reasoning presented in Section 3.3.2 and Section
5.1. Future studies will be focused on optimizing the
performance of the DANN by conducting a set of sen-
sitivity analyses, exploring a comprehensive range of
values for each DANN parameter including the num-
ber of hidden layers, the number of units per hidden
layer, and the number of cycles of Phases I and II. As
an example of how sensitivity analysis can be used to
improve performance, this section considers optimiz-
ing the parameter N, the number of PRC components
in a queue that can be evaluated for processing. As not-
ed in Section 3.3.1, the input structure of a DANN is
rigid and therefore the value for N has to be pre-deter-
mined. In the experiments reported above, N was set
to a maximum of 20 PRC components. In this section,
a sensitivity analysis is reported looking at the depen-
dence of performance on the value of N, ranging from
5 to 30 in steps of 5 PRC components. These results
are presented in Figure 11, with each curve represent-
ing the best DANN's generated over 20 RL training cy-
cles for different values of N. Performance is shown
for the last 2,000 PRC components in an 8,000 testing
PRC component run, using the random policy as the
benchmark. For comparison, the performance of the
rule-of-thumb policy is also shown as a green dashed
line. Note, the seed for the random number genera-
tors used in the stochastic sampling during simulation
where different to the experiments in Section 5.1. This
changed the absolute values generated in the produc-
tion runs, but the characteristic performance behavior
of the policies was similar.

The optimum value for N was found to be 10 PRC
components, providing a mean improvement in deliv-
ery time of 75.1. This is over twice the performance of
the DANN trained with N set to the original value of
20, where the mean improvement in delivery time was
found to be 35.3. A summary of the performances for
the different values of N, measured at the end of the
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(a) Performance over a run of 2,000 training PRC components.

(b) Performance over a run of 2,000 training PRC components.

Figure 9. Comparative performance of the DANN and rule-of-thumb policies.

8,000 testing PRC component run, is given in Figure
12. Note, the rule-of-thumb policy is equivalent to us-
ing a DANN with N set to 0, and is thus shown as such
in this figure by the green marker. The overall form
of the curve in Figure 12 is not surprising and can be
explain as follows. The initial increase in performance
(from N = 0 to 10) is likely due to an increase in the
number of choices available to the DANN policy when
selecting the next PRC component to start working.

The subsequent decrease in performance (from N = 10
onwards) is possibly due to several reasons including
the rapidly increasing sparsity of training patterns in
higher dimensional input space. The constancy of this
observation, and its dependence on other system attrib-
utes (such as work demand), requires further investi-
gation. Future work will also consider developing an
array of DANNs, each trained to serve queues of dif-
ferent lengths rather than a one-size-fits-all approach.

Improving Delivery Performance of Construction Manufacturing Using Machine Learning

8:11 / 8:14



Figure 10. Testing performance of the DANN using the rule-of-thumb as the benchmark.

Figure 11. Dependence of performance on N, evaluated over a testing run of 8,000 PRC components.

6 Conclusion and Future Work
The paper presented the development and evaluation
of a DANN-based policy for controlling a construction
factory producing PRC components, trained using RL
techniques. Control was concerned with selecting PRC
components from a queue for processing (when the
process became available) with the aim of optimizing
delivery performance. The performance of the DANN
policy was compared to a rule-of-thumb and a random
selection policy. The DANN was developed and tested
using a simulation of an actual precast reinforced con-
crete factory.

A primary goal of this study was to determine if
the DANN approach could cope with the unique chal-

lenges posed by the construction industry. The DANN
proved able to learn an effective and reliable policy
operating within this environment, and was found to
significantly outperform the rule-of-thumb and ran-
dom policies over long production runs (of 8,000 PRC
components) except on some rare occasions.

An analysis of the progress of learning during the
RL procedure indicated that addition training cycles,
beyond the 20 considered, would likely improve the
performance of the DANN policy. Furthermore, per-
formance was found to be strongly dependent on the
value adopted for N (the maximum number of PRC
components in a queue considered for processing by
the DANN). Based on these analyses, it is clear that
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Figure 12. Summary of dependence of performance on N measured at the end of the testing run.

the performance of the DANN has potential for further
improvement. Indeed, there are many other parameters
open to experiment that could further optimize perfor-
mance, including:

• Undertaking sensitivity analyses on the structure
and architecture of the DANN, including exper-
imenting with the number of hidden layers, the
number of hidden units per layer, and the inclu-
sion of an ensemble of models.

• Increasing the length and diversity of production
runs used for training, thereby increasing the size
and scope of the training dataset.

• Undertaking sensitivity analyses on the RL hy-
per-parameters such as the reward term lengths,
the rewards discount rate, the number of trials per
stage, and the number of stages in a cycle.

• Testing the performance of alternative RL algo-
rithms.

The following work is planned to increase the scope of
application of the approach:

• Case studies aimed at identifying detailed perfor-
mance data, logistics, and the practical issues as-
sociated with day-to-day control of construction
manufacturing systems. This would include the
use of alternative cost functions that reflect the
range of objectives that different manufactures
may consider important.

• Increasing the range of state data used for input
and the scope of the type of decisions made by the
decision agent.

Finally, a study is proposed comparing the perfor-
mance of the RL-based DANN approach with heuris-
tic search techniques to solve the same class of prob-
lems, considering both delivery performance and deci-
sion processing time.
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