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Abstract
This paper is concerned with the development, testing,
and optimization of a machine learning method for con-
trolling the production of precast reinforced concrete
components. A discussion is given identifying the
unique challenges associated with achieving production
efficiency in the construction industry, namely: uncertain
and sporadic demand for work; high customization of
the design of components; a need to produce work to or-
der; and little prospect for stockpiling work. This is fol-
lowed by a review of the methods available to tackle this
problem, which can be divided into search-based tech-
niques (such as heuristics) and experience-based tech-
niques (such as artificial neural networks). A model of
an actual factory for producing precast reinforced con-
crete components is then described, to be used in the de-
velopment and testing of the controller. A reinforcement
learning strategy is proposed for training a deep artificial
neural network to act as the control policy for this facto-
ry. The ability of this policy to learn is evaluated, and its
performance is compared to that of a rule-of-thumb and
a random policy for a series of testing production runs.
The reinforcement learning method developed an effec-
tive and reliable policy that significantly outperformed
the rule-of-thumb and random policies. An additional se-
ries of experiments were undertaken to further optimize
the performance of the method, ranging the number of
input variables presented to the policy. The paper con-
cludes with an indication of proposed future research de-
signed to further improve performance and to extend the

scope of application of the method.

1 Introduction
Factory-based construction manufacturing has the poten-
tial to overcome many of the inefficiencies of tradition-
al on-site methods. However, achieving production effi-
ciency in a construction factory is usually more challeng-
ing than for other manufacturing industries. This is be-
cause construction work does not lend itself to the meth-
ods of mass production. Work arrives in batches at ir-
regular intervals with large fluctuations in demand, the
work can be diverse in design both between and within
batches, and the products are rarely reproduced. Conse-
quently, work has to be made to order with little or no
potential for stockpiling, and with large variations in the
demand for productive resources.

Controlling construction operations (such as select-
ing the next job in a queue to be processed) is unlikely to
be achieved optimally by simple manually crafted rules,
given the complexities of construction demand. A more
sophisticated rule system, taking into account a wide
range of system situations and outcomes, is required. A
promising approach to this problem is machine learning
(ML), whereby an artificial intelligence (AI) agent uses
a deep artificial neural network (DANN) to control op-
erations. These agents would act like an advisor in a hu-
man-in-the-loop system, or as a controller in an automat-
ed system, generating solutions whenever an operational
decision is required.

The use of AI-based decision agents to control op-
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erations in construction is limited. Shitole et al. (2019)
developed an AI agent for optimizing a simulated earth-
moving operation based on artificial neural networks
(ANNs) trained using reinforcement learning (RL), and
found it outperformed previously published manually
crafted heuristics. RL is a broad class of learning tech-
niques based on discovery and rewards that has demon-
strated much success in recent years (Sutton & Barto,
2018). Their earth-moving system comprised two exca-
vators serving a fleet of dump-trucks. The function of the
AI agent was to direct the trucks to one or other of the
excavators at a junction in the return road, with the goal
of optimizing the overall production rate of the system.
An issue with this approach to process control is its lack
of extensibility. That is, the AI agent can only be applied
to the earth-moving system considered in the study. Ap-
plying the AI agent to a new situation with a different
site layout and/or equipment combination would require
retraining. Although this could be achieved prior to the
start of the new construction operation, it would never-
theless be a significant burden on pre-construction plan-
ning. Clearly, there is a need for more work in the area
of ANN extensibility.

An alternative application area to site-based con-
struction, with more immediate application given current
AI technology, is factory centered manufactured con-
struction. In this situation, the life-span of an AI agent
should be relatively long, lasting at least until any recon-
figuration of the factory system is required or a change
occurs in its operating environment. This study is fo-
cused on factory-based construction manufacture,
specifically for precast reinforced concrete (PRC) com-
ponent production.

Optimization of customized PRC component pro-
duction has been considered by several researchers (Leu
& Hwang, 2001; Chan & Hu, 2002; Benjaoran & Da-
wood, 2005), using genetic algorithms (GAs) to improve
production performance. Although the approach was
shown to be successful, heuristic search methods such as
GAs are computationally expensive. Therefore, they are
not well suited to situations where decisions have to be
made in real-time.

RL solutions based on a learned model, such as that
developed by Shitole et al. (2019), will generate rapid
solutions to a decision problem, once trained. A number
of authors have applied this method to the control of
factory operations (Waschneck et al., 2018; Zhou et al.,
2020; Xia et al., 2021) and found results to be promising
when compared to more conventional approaches such
as rule-of-thumb decision techniques. Unfortunately, ap-
plications have been outside construction manufactur-
ing, and therefore do not address many of the challenges
of this industry (such as uncertainty in the arrival of jobs,
size of the batches, processing time, and design of the
products), although Waschneck et al. (2018) did consider

some level of product customization within the semicon-
ductor industry.

This paper presents a more detailed analysis and ex-
tension to the work by Flood & Flood (2022) published
in the proceedings of the 12th International Conference
on Simulation and Modeling Methodologies, Technolo-
gies and Applications, Lisbon. The Lisbon paper per-
formed a proof-of-concept on the viability of using an
RL trained DANN to control factory-based manufacture
of PRC components, given the unique demands of the
construction industry. This paper goes beyond that
proof-of-concept to: (a) model a real PRC component
factory using data published by Wang et al. (2018); (b)
extend the depth and scope of the performance exper-
iments and their analyses; and, (c) add new research
investigating the impact on performance of increasing
the choices made available to the DANN-based decision
agent.

2 Factory-Based Production Control

2.1 Decision Agents
The future track followed by a construction manufactur-
ing system is determined by both controllable and un-
controllable events. The controllable events provide an
opportunity to steer this track along a line that is fa-
vorable to the manufacturer, optimizing performance in
terms of, say, productivity and/or profit. This is achieved
through the selection of an appropriate sequence of de-
cisions wherever options exist. Examples of such deci-
sions include prioritizing jobs in a queue, deciding when
to take an item of equipment offline for maintenance,
and selecting the number of machines to allocate to a
process.

These decisions are made by one or more agents, as
illustrated in Figure 1, that operate dynamically through-
out the life of the manufacturing system. An agent mon-
itors relevant variables defining the state of the system
and its environment, S, (both current and possibly past
states, and even predictions about future states) then uses
these insights to decide on appropriate future actions to
implement. Typically, these actions will concern events
in the immediate future (given that the most relevant, ac-
curate, and valuable information is available at the time
of the decision) but can also be applied to events later in
the future for decisions that have a long lead time, such
as the purchase of resources.

An important dichotomy of decision agents is
search-based versus experience-based systems. Search-
based agents, which include blind and heuristic methods,
use a systematic exploration of the solution space look-
ing for the best action attainable. They tailor a solution
to the specific instance of the problem at hand. As such,
they may find better optimized solutions than experi-
ence-based agents, although that needs to be tested.
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Figure 1. Dynamic system control by a decision agent.

Search-based agents are also highly extensible, meaning
they can be easily adapted to new versions of the prob-
lem. A shortcoming is that they can be computationally
expensive and thus not suited to situations requiring real-
time rapid decision making.

In contrast, experience-based agents, which include
rules-of-thumb and ANNs, make decisions based on ex-
posure to similar situations from the past. Once devel-
oped, an experience-based agent can output decisions
rapidly. However, because the solutions they offer are
generic rather than tailored to each situation, their deci-
sions may not be as well optimized as those of search-
based agents. Furthermore, experience-based agents tend
to lack extensibility; each new version of the problem re-
quires redevelopment of the agent, which in turn requires
the acquisition and assimilation of large volumes of new
information on system behavior.

A hybrid of these agent types is also possible. For ex-
ample, an experience-based agent can be used to make
the first attempt at a solution and then a search-based
agent can be used to improve on this result. Conversely,
a search-based agent could be used to acquire examples
for development of an experience-based agent.

A longer term objective for this study is to quantify
and compare the benefits of search-based and experi-
ence-based approaches to controlling construction pro-
duction systems. This paper, however, focuses on expe-
rience-based approaches applied to factory-based con-
struction manufacturing. Two experience-based methods
are considered, a rule-of-thumb and a DANN, represent-
ing two extremes in functional complexity. DANNs are
variants of ANNs that include multiple hidden layers
or recursion between units. The additional structure of-
fers a corresponding increase in functional complexity,

although model development has additional challenges.
Although a DANN is an experience-based approach, its
development will involve the use of search techniques
to gather good training solutions, specifically using RL
techniques. The rule-of-thumb and the DANN are com-
pared to a random decision making method used as a
performance benchmark.

2.2 DANN Development Strategies
For a construction manufacturing environment, optimal
solutions to decision problems are not easily attained
a priori or from direct observation of the real system.
This excludes the direct use of supervised training tech-
niques for development of the DANN. There are many
ways around this problem, including using a strategy
of hindsight whereby the agent explores alternative de-
cision tracks in a simulation environment, then selects
those that are most successful, effectively learning by tri-
al-and-error.

For DANNs, there are two broad approaches to hind-
sight model development. The first is to explore adjust-
ments to the structure and/or weights of the model direct-
ly, and to select those that result in a better performing
decision track. This is in effect an evolutionary method
(see, for example, Iba & Noman (2020), and was the ba-
sic strategy investigated by Flood (1989) for selecting
sequences for construction jobs in an offline optimiza-
tion problem. The second approach is to explore adjust-
ments to the output from the model, then to evaluate their
impact on the performance of the decision track and to
feed this back to the model in a supervised manner. This
was the approach adopted for this study, and can be clas-
sified as a RL method.
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Figure 2. Historic track of the real system followed by simulated alternative future tracks of the system.

3 Modeling
A key function of RL is the exploration of alternative de-
cision tracks and their impact on the performance of the
system. This experience is used to shape the decisions
made by the agent, mapping from system state to action.
This mapping is referred to as the decision policy.

In construction production (including factory-based
construction manufacturing) it is not practicable to ex-
periment with alternative decision policies using the real
system. Construction work is rarely reproduced making
it almost impossible to compare the effectiveness of al-
ternative strategies. Artificially reproducing work is also
not viable given the cost and time required to manu-
facture a construction component. One way around this
problem is to build a simulation model of the construc-
tion production system, and then to use this to experi-
ment with alternative policies. This concept is illustrat-
ed in Figure 2, where the blue line represents the his-
toric track taken by the real system, and the orange lines
represent alternative future tracks explored by different
policies in a simulated version of the system. Informa-
tion about the real system and its past behavior would be
used to develop and validate the simulation model. The
information gathered from the simulated system are used
to develop and test (validate) the policy, as described in
Section 4.

3.1 Production Simulator
Figure 3 shows a schematic model of the production sys-
tem considered for this study, representing the manufac-
ture of PRC components such as walls, floors, beams,
and column units. The system and its process duration
data were obtained from the study published by Wang
et al. (2018). This study was chosen because it captures
the challenging and unique features of construction man-
ufacturing, namely:

• orders arrive in a sparse random manner, must be
made to order and cannot be stockpiled;

• each order consists of a batch of components vari-

able in number;
• many if not all components are unique in design

both within a batch and between batches, and there-
fore have variable handling times at each process;

• all components have uncertainty in the handling
times at each process; and

• all components must be delivered by a given date in
accordance with a site assembly schedule.

In addition, the following assumptions were made
about the system:

• the processes are executed sequentially by all com-
ponents, in the order shown in Figure 3;

• the arrival of orders is considered to be a Poisson
process, with an arrival rate, λ (the average number
of order arrivals per unit of time), selected so that
the work demand would slightly exceed the max-
imum throughput of the system (see Section 5 for
the selection of this value);

• incoming orders consist of a batch of PRC compo-
nents, the number of which is sampled from a pos-
itively skewed triangular distribution (rounded to a
positive integer), with parameters chosen to gener-
ate a large variance in demand;

• on-site delivery of a PRC component is measured
as a contingency time beyond the sum of the com-
ponent's process duration, and is also sampled from
a triangular distribution;

• work proceeds 24 hours per day without breaks;
• each process has only sufficient resources to serve

one component at a time, except the Cure process
which can handle an unlimited number of compo-
nents; and

• curing time is considered to be the same for all PRC
components.

The stochastic time related data used for this study, in-
cluding their distribution types, are given in Table 1. The
dynamics of the system are given by the relative values
of these data (rather than by their absolute values) and
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Figure 3. Production model for precast reinforced concrete (PRC) components.

therefore time units are not included. The triangular dis-
tribution was adopted because it is computationally inex-
pensive and yet provides a versatile way of approximat-
ing a wide range of distribution shapes, including those
with skew.

3.2 Policy Types Considered
The control of the system is undertaken by a decision
agent as shown in Figure 3. Whenever a vacancy arises
at a process, the agent will select a PRC component for
processing from the corresponding queue, using its cur-
rent policy. Three alternative types of policy were con-
sidered:

1. A random policy in which the PRC component is
selected from a queue using a uniformly distributed
random variate. This was included as a performance
benchmark for comparison with the other policies.

2. A rule-of-thumb policy in which the PRC compo-
nent with the least remaining contingency time in
the queue is selected. Note, negative contingencies
(delays) are possible. This type of policy was in-
cluded as a performance benchmark for comparison
with the DANN policy.

3. A DANN policy developed using the RL method
described in Section 4. The selection of a PRC com-
ponent from a queue is based on system state in-
formation. Preliminary experiments indicated that a
policy was only effective where bottlenecks formed
in the system, in this case at the Rebar queue.
Therefore, the DANN policy was only implemented
for Rebar, and all other queues reverted to the rule-
of-thumb policy.

3.3 DANN Structure
The DANN has a layered feedforward structure as
shown in Figure 4.

3.3.1 Input Layer

The input layer receives both temporal and spatial in-
formation about the state of the system and the work
to be completed. The input values specify the process
durations and the remaining contingencies for the PRC

components currently in the queue under consideration.
These data are normalized at the input for each process.
The location of the values at the input indicates the posi-
tion in the queue, and the relevant process.

An issue with this approach stems from the fact that
the structure of the inputs to the DANN is fixed (DANNs
are structurally rigid) yet the number of PRC compo-
nents in the system that need to be evaluated is variable.
To get around this, the DANN was designed to allow
up to a stipulated number (N) of PRC components to be
evaluated in each queue: if the number of PRC compo-
nents in a queue is less than N then the spare input values
are set to 0.0; and if the number of PRC components in
a queue is greater than N then only the first N PRC com-
ponents will be evaluated. Furthermore, the N PRC com-
ponents evaluated are those with the least contingency,
and in this sense the DANN is a hybrid with the rule-of-
thumb policy. The value of N used varied between 0 and
30, as detailed in the results, Section 5.

3.3.2 Hidden Layers

The number of hidden layers was set to 6 and the number
of hidden units per layer was set to 64. These values
were found to have good performance in the DANN
training phase (see Section 4.2) in a preliminary search.
A more thorough sensitivity analysis ranging these para-
meters is planned for future work.

All hidden units adopted the ReLU (rectified linear
unit) activation function due its computational efficiency
and avoidance of the vanishing gradient problem (Glorot
et al., 2011).

3.3.3 Output Layer

The DANNs output layer is where the PRC components
are selected from the queues for processing. All output
units use a sigmoid activation function, thereby limiting
their activation to values between 0.0 and 1.0. The out-
put units correspond a position in the queue. The number
of units is equal to N, the number of PRC components to
be evaluated in a queue (see Section 3.3.1). The current
length of a queue or N, whichever is smallest, determines
the number of units that are active. The values generated
at the active output units are normalized to sum to 1.0.

Improving Delivery Performance of Construction Manufacturing Using Machine Learning
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Table 1. Modeling the event, quantity, and durations of production variables.

System Variable Form of Uncertainty Parameters

Order arrival time Poisson process
Arrival rate (λ)

1
7,000

Batch size Discretized triangular distribution Min Mode Max
1 20 100

Rebar durations Triangular distribution Min Mode Max
120 200 250

Forms durations Triangular distribution Min Mode Max
130 150 170

Concrete duration Triangular distribution Min Mode Max
0 50 70

Cure duration Fixed ~

Strip duration Triangular duration Min Mode Max
80 100 120

Delivery duration Triangular distribution Min Mode Max
30 50 70

Contingency time relative to site assembly time Triangular distribution Min Mode Max
10 100 200

This allows the output values to be treated as probabili-
ties for selecting PRC components from a queue.

The DANN policy has two modes of operation:

• Exploration. This mode is used to steer the sim-
ulation through alternative partially-random tracks,
to gathering high-reward input-output pattern pairs
for training the DANN. Monte Carlo sampling is
used to select PRC components based on the values
generated at the relevant output units. The higher

the value generated at an output, the more likely
the corresponding PRC component will be selected.
The broader strategy adopted for learning is given
in Section 4.

• Implementation. This mode operates by selecting
a PRC component from a queue based on the output
unit that generates the highest value within its
group. The operation is entirely deterministic. It is
used to control the simulated system in non-training
mode, to test the performance of the current policy.

Improving Delivery Performance of Construction Manufacturing Using Machine Learning
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Figure 4. Structure of the DANN.

Figure 5. Two phase reinforcement learning DANN development cycle.

In addition, this is the mode that would be adopted
when using the policy to control the real system.

4 DANN Learning Strategy
DANN development is a deeply nested process, as
shown in Figure 5. The outer level of this process com-
prises two main phases: Phase I, the collection of train-
ing patterns through the exploration of alternative de-
cision tracks; and, Phase II, the training of the DANN.
These phases are cycled through a number of times until
learning converges, each occasion using the most recent
version of the DANN to control the simulation. Each
time the system cycles back to Phase I, the simulation is
reset to a new starting point. These phases are described
in detail in the following two sections.

4.1 Collection of Training Patterns
Collecting training patterns is undertaken in a series of
stages s, as illustrated in the upper blue section of Figure
5. Each stage experiments with a predefined number of
trials t simulating the fabrication of a set of PRC com-
ponents. The trial with the best production performance
(see Section 4.1.1) is selected for later training of the
DANN, and as the lead-in for the next stage in the sim-
ulation. The training patterns collected are the mappings
from input to output for each state transition in the se-
lected trial.

This process continues until a specified number of
stages have been completed, each time collecting train-
ing patterns from the best performing trial. For future
studies, parameters that can be investigated in terms of
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optimizing performance are the number of trials per
stage, the number of PRC components to be fabricated
per trial (this could be variable between stages), and the
number of stages in the phase.

After completion of this phase, the system moves to
DANN training before returning for another round of
collecting training patterns. The intent is that by cycling
between Phases I and II in this manner, the policy will
move towards a better solution incrementally.

4.1.1 Delivery Performance

Delivery performance is measured in terms of delays to
the delivery of PRC components, with smaller delays be-
ing more favorable. The cost function used for training
is the root-mean-square (RMS) of these delays, as shown
in Equation 1. Note, a PRC component could be deliv-
ered early (indicated by a negative delay) but the square
operation would cancel the negative sign and thereby
treat it as an equivalent delay. Therefore, the delays in
this function are offset relative to a base value to give
greater emphasis to actual delays over early deliveries.

(1)cost = √∑n

i = 1
(di − b)2

n

where

d is the delay for the ith PRC component at its com-
pletion;

n is the number of PRC components completed at the
current trial;

b is the base value against which the delays are offset
- this value is the maximum contingency time possible
for a PRC component.

4.1.2 Rewards

The learning strategy presented here collects training
patterns based on their success in improving system per-
formance. For this reason, a training pattern's output val-
ues are modified from that produced by the DANN to in-
crease the probability of making the same selection in a
similar circumstance. The modification (a reward) is to
move the selected output value closer to 1.0, and to move
the other relevant output values closer to 0.0, remember-
ing that the output values are treated as probabilities of
selecting a RC component from the queue. The extent of
the modification will be treated as an experimental hy-
per-parameter, although for this study the rewards are set
to 0.0 and 1.0 without any discount.

4.2 DANN Training
The training patterns collected in Phase I are used to
train the DANN, or to further train it in repeat cycles, as
illustrated in the lower orange section of Figure 5.

The DANN was implemented in Python and PyTorch
(Paszke et al., 2019), using the optimizer RMSProp

(root-mean-square propagation) and the loss function
MSELoss (mean-squared-error) with reduction set to
mean. Data loading used a mini-batch size of 64 (with
a training set size typically around 2,000 per cycle) with
shuffling switched on. The learning rate was set to 0.001.

Training was conducted until the output from the
loss function had converged, which was typically within
1,000 epochs. Testing of the system was undertaken after
the RL learning cycle had plateaued. This involved run-
ning the simulation in implementation mode (see Section
3.3.3) using a start point not used for learning.

5 Results and Discussion
Ideally, there should be a balance between the demand
for work (given by the batch size distribution for orders
and their arrival rate, λ) and the factory's maximum out-
put (determined in part by the handling times for the
processes). An efficient control policy will allow this
balance to be achieved in an optimal way, either by max-
imizing the amount of work taken-on without causing
deliveries to be late, or minimize the number of produc-
tive resources needed to fulfill the demand. This study
considers a situation where the demand is slightly in ex-
cess of the balance point, and then compares the per-
formances of the alternative policy types (give in Sec-
tion 3.2) to increase delivery performance (as measured
in Section 4.1.1). The first experiment was performed to
identify the arrival rate, λ, for orders that would give rise
to this level of demand, given the handling times for the
processes shown in Table 1. Figure 6 shows the results
from running the factory simulation five times using a

range of different order arrival rates (from λ = 1
5,000 to

λ = 1
9,000 ). Each of these five simulations was run until a

total of 10,000 individual PRC components were output
(an average of 248 batches of PRC components per sim-
ulation run). Each curve shows the rolling average of the
delays for the components across the 10,000 PRC com-
ponent production runs. A rolling mean delay of 1,000,
for example, indicates that on average the PRC compo-
nents are delivered 1,000 time units late up to that point
in the production run. The policy used to control the sys-
tem was an untrained DANN. Based on these results, an

order arrival rate of λ = 1
7,000 was selected as it appeared

to create a demand that slightly exceeds the output from
the factory. This is difficult to verify, however, due to the
strong stochastic nature of the system's behavior. Future
research should check the resilience of the DANN policy
to changes in the order arrival rate.

A series of experiments were undertaken to assess
the ability of the DANN to learn an efficient policy for
controlling the PRC production process, to compare its
performance with both the rule-of-thumb and random
policies outlined in Section 3.2, and to test the sensitivity
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Figure 6. Sensitivity of the rolling delays to changes in the order arrival rate (λ).

of its performance to varying the number of PRC compo-
nents (N) that it evaluates at its input (see Section 3.3.1).

5.1 Learning Performance
The first performance experiment was designed to eval-
uate the ability of the DANN to learn using the proposed
RL method described in Section 4. The parameters se-
lected for the RL process were as follows:

• The number of cycles of Phases I and II was set to
20 (see Section 4.1, Figure 5) since initial experi-
ments indicated that there was little learning being
accumulated beyond this point.

• The maximum number of PRC components, N, to
be evaluated in a queue by the DANN (see Section
3.3.1) was set to 20 since the queue lengths were
rarely found to extend beyond this value for the sys-
tem considered. Later, in Section 5.2, results are
presented looking at the relationship between the
value of N and performance.

• During Phase I in the training cycle, training data
was collected over a 2,000 PRC component produc-
tion run, divided into 100 stages of 20 PRC compo-
nents each and with 100 trials per stage (see Section
4.1, Figure 5). Each cycle generated around 2,000
training patterns. Future work will investigate the
relationship between these parameters and perfor-
mance.

• Following the completion of each cycle, a testing
run of the system was made for a sequence of 8,000
PRC components not used for training.

Figure 7 shows the performance of the DANN control
policy over 20 cycles of the RL method. Performance
is measured as the mean improvement in delivery time
provided by the DANN (using the random policy as

the benchmark, Section 3.2) over a simulated production
run. The training runs were performed for a sequence of
2,000 PRC components (results shown in orange), while
the testing runs were performed for a sequence of 8,000
PRC components (results shown in blue). Each point in
the figure indicates the mean improvement at a given
stage in the RL cycle. For example, the best performance
for a training run occurred at the 3rd RL cycle, where
the DANN policy (compared to the random policy) had
a mean improvement in delivery time of 36.6 time units
per PRC component.

The best version of the DANN should be selected
based on the testing run since it is independent of train-
ing and therefore does not have any potential inherent
bias towards the trained DANN. Thus, for the 20 cycles
considered, the best performing DANN was that gener-
ated at the 14th RL cycle, having a mean improvement
in delivery time of 21.4 time units per PRC component
(about 3.9% of the active processing time for an average
PRC component). Clearly, in this regard, the DANN out-
performed the random policy.

Figure 7 indicates that there is significant stochastic
variance in the performance of the DANN over the RL
cycles. For this reason, the linear trends for the two
curves were also plotted on the figure. These trend lines
indicate that both training and testing performance
would likely improve if additional RL cycles were un-
dertaken. The apparent positive trend for the testing per-
formance suggests that the DANN is currently under-
trained. The difference in the height of the two trend
lines is to be expected, and is probably due to innate bias
in the DANN to the data on which it was trained.

Figure 8 shows a similar plot to that of Figure 7,
except that the performance of the DANN is measured
using the rule-of-thumb policy as the benchmark rather
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Figure 7. Performance of the DANN policy relative to the random policy, over 20 RL cycles.

Figure 8. Performance of the DANN policy relative to the rule-of-thumb policy, over 20 RL cycles.

than the random policy. The conclusions drawn from
Figure 8 are similar to those from Figure 7, with the best
version of the DANN being generated at the 14th RL cy-
cle (according to the testing data), and with the DANN
outperforming the rule-of-thumb policy, in this case by
23.2 time units per PRC component.

Figure 9 compares the performances of the rule-of-
thumb policy and DANN policy at different RL cycles,
using the random policy as the benchmark. The lines in-
dicate the rolling mean improvement in delivery time,
with the dashed green line representing the rule-of-
thumb policy, the gray lines representing the DANN pol-
icy at various RL cycles, and the black line representing
the best performing DANN policy. The lowest gray line
in the figure represents the DANN policy before it un-
derwent any training. The best performing DANN is that

generated at RL cycle 14 as noted earlier.
Figure 9a shows the relative performances of the

specified policies over the 2,000 training PRC compo-
nent run. The most significant point on this graph is
at the 2,000th PRC component as that indicates perfor-
mance based on all the training data. Figure 9b shows
the same but for 2,000 testing PRC components, taken
from the middle of an 8,000 PRC component run. Look-
ing at Figure 9b, it is clear that the best DANN policy
significantly outperformed the rule-of thumb policy for
most of the plot. However, around the 4,400 PRC com-
ponents location, the rule-of-thumb policy accumulated
large gains that briefly took it beyond the performance
of the best DANN policy. Indeed, whenever the DANN
policy and rule-of-thumb policies experienced large
peaks in performance, it appears the rule-of-thumb poli-
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(a) Performance over a run of 2,000 training PRC components.

(b) Performance over a run of 2,000 training PRC components.

Figure 9. Comparative performance of the DANN and rule-of-thumb policies.

cy improved more quickly. This suggests that more train-
ing of the DANN may be beneficial in the scenarios that
lead to these peaks.

Figure 10 presents the same testing results as Figure
9b but with the DANN's performance benchmarked
against the rule-of-thumb policy indicated by the dashed
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Figure 10. Testing performance of the DANN using the rule-of-thumb as the benchmark.

green line. This shows more clearly the relative perfor-
mances of the DANN and rule-of-thumb policies. The
best DANN policy tends to hover around a 14 to 15
time unit per PRC component advantage over the rule-
of-thumb policy, but with occasion dips in relative per-
formance.

5.2 Performance Dependence on the Num-
ber of PRC Components Sampled by the
DANN
The experiments detailed in the previous section repre-
sent the initial formal training of the DANN, utilizing
values for adjustable parameters selected based on the
reasoning presented in Section 3.3.2 and Section 5.1. Fu-
ture studies will be focused on optimizing the perfor-
mance of the DANN by conducting a set of sensitivity
analyses, exploring a comprehensive range of values for
each DANN parameter including the number of hidden
layers, the number of units per hidden layer, and the
number of cycles of Phases I and II. As an example of
how sensitivity analysis can be used to improve perfor-
mance, this section considers optimizing the parameter
N, the number of PRC components in a queue that can be
evaluated for processing. As noted in Section 3.3.1, the
input structure of a DANN is rigid and therefore the val-
ue for N has to be pre-determined. In the experiments re-
ported above, N was set to a maximum of 20 PRC com-
ponents. In this section, a sensitivity analysis is reported
looking at the dependence of performance on the value
of N, ranging from 5 to 30 in steps of 5 PRC compo-

nents. These results are presented in Figure 11, with each
curve representing the best DANN's generated over 20
RL training cycles for different values of N. Performance
is shown for the last 2,000 PRC components in an 8,000
testing PRC component run, using the random policy as
the benchmark. For comparison, the performance of the
rule-of-thumb policy is also shown as a green dashed
line. Note, the seed for the random number generators
used in the stochastic sampling during simulation where
different to the experiments in Section 5.1. This changed
the absolute values generated in the production runs, but
the characteristic performance behavior of the policies
was similar.

The optimum value for N was found to be 10 PRC
components, providing a mean improvement in delivery
time of 75.1. This is over twice the performance of the
DANN trained with N set to the original value of 20,
where the mean improvement in delivery time was found
to be 35.3. A summary of the performances for the dif-
ferent values of N, measured at the end of the 8,000 test-
ing PRC component run, is given in Figure 12. Note,
the rule-of-thumb policy is equivalent to using a DANN
with N set to 0, and is thus shown as such in this figure
by the green marker. The overall form of the curve in
Figure 12 is not surprising and can be explain as follows.
The initial increase in performance (from N = 0 to 10) is
likely due to an increase in the number of choices avail-
able to the DANN policy when selecting the next PRC
component to start working. The subsequent decrease in
performance (from N = 10 onwards) is possibly due to
several reasons including the rapidly increasing sparsi-
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Figure 11. Dependence of performance on N, evaluated over a testing run of 8,000 PRC components.

Figure 12. Summary of dependence of performance on N measured at the end of the testing run.

ty of training patterns in higher dimensional input space.
The constancy of this observation, and its dependence
on other system attributes (such as work demand), re-
quires further investigation. Future work will also con-
sider developing an array of DANNs, each trained to
serve queues of different lengths rather than a one-size-
fits-all approach.

6 Conclusion and Future Work
The paper presented the development and evaluation of
a DANN-based policy for controlling a construction fac-
tory producing PRC components, trained using RL tech-
niques. Control was concerned with selecting PRC com-
ponents from a queue for processing (when the process
became available) with the aim of optimizing delivery
performance. The performance of the DANN policy was

compared to a rule-of-thumb and a random selection pol-
icy. The DANN was developed and tested using a simu-
lation of an actual precast reinforced concrete factory.

A primary goal of this study was to determine if the
DANN approach could cope with the unique challenges
posed by the construction industry. The DANN proved
able to learn an effective and reliable policy operating
within this environment, and was found to significantly
outperform the rule-of-thumb and random policies over
long production runs (of 8,000 PRC components) except
on some rare occasions.

An analysis of the progress of learning during the
RL procedure indicated that addition training cycles, be-
yond the 20 considered, would likely improve the perfor-
mance of the DANN policy. Furthermore, performance
was found to be strongly dependent on the value adopted
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for N (the maximum number of PRC components in a
queue considered for processing by the DANN). Based
on these analyses, it is clear that the performance of the
DANN has potential for further improvement. Indeed,
there are many other parameters open to experiment that
could further optimize performance, including:

• Undertaking sensitivity analyses on the structure
and architecture of the DANN, including experi-
menting with the number of hidden layers, the num-
ber of hidden units per layer, and the inclusion of an
ensemble of models.

• Increasing the length and diversity of production
runs used for training, thereby increasing the size
and scope of the training dataset.

• Undertaking sensitivity analyses on the RL hyper-
parameters such as the reward term lengths, the re-
wards discount rate, the number of trials per stage,
and the number of stages in a cycle.

• Testing the performance of alternative RL algo-
rithms.

The following work is planned to increase the scope of
application of the approach:

• Case studies aimed at identifying detailed perfor-
mance data, logistics, and the practical issues asso-
ciated with day-to-day control of construction man-
ufacturing systems. This would include the use of
alternative cost functions that reflect the range of
objectives that different manufactures may consider
important.

• Increasing the range of state data used for input and
the scope of the type of decisions made by the deci-
sion agent.

Finally, a study is proposed comparing the performance
of the RL-based DANN approach with heuristic search
techniques to solve the same class of problems, consid-
ering both delivery performance and decision processing
time.
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