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Abstract
In simulation engineering, a system model mainly consists of an information model describing a system's state struc-
ture and a process model describing its dynamics. In the fields of Information Systems and Software Engineering, there
are widely used standards such as the Class Diagrams of the Unified Modeling Language (UML) for making informa-
tion models, and the Business Process Modeling Notation (BPMN) for making process models. This tutorial presents a
general Object Event Modeling (OEM) approach for Discrete Event Simulation modeling using UML class diagrams
and BPMN-based process diagrams at all three levels of model-driven simulation engineering: for making conceptual
domain models, for making platform-independent simulation design models, and for making platform-specific, exe-
cutable simulation models. In this approach, object and event types are modeled as special categories of UML classes,
random variables are modeled as a special category of UML operations constrained to comply with a specific proba-
bility distribution, and queues are modeled as ordered association ends, while event rules are modeled both as BPMN-
based process diagrams and pseudo-code. In Part II, we discuss the more advanced OEM concepts of activities and
GPSS/SIMAN/Arena-style Processing Networks. Finally, in Part III, we further extend the OEM paradigm towards
agent-based modeling and simulation by adding the concepts of agents with perceptions, actions and beliefs.

1 Introduction
The term simulation engineering denotes the scientific
engineering discipline concerned with the development
of computer simulations, which are a special class of
software applications. Since a running computer simula-
tion is a particular kind of software system, we may con-
sider simulation engineering as a special case of software
engineering.

Although there is a common agreement that model-
ing is an important first step in a simulation project, it
is also thought to be the least understood part of simu-
lation engineering (Tako, Kotiadis, & Vasilakis, 2010).
In a panel discussion on conceptual simulation modeling
(Zee et al., 2010), the participants agreed that there is a
lack of “standards, on procedures, notation, and model
qualities”. On the other hand, there is no such lack in
the field of Information Systems and Software Engineer-
ing (IS/SE) where standards such as the Unified Mod-
eling Language (UML) and the Business Process Mod-
eling Notation (BPMN) have been widely adopted, and
various modeling methodologies and model quality as-

surance methods have been established.
The standard view in the simulation literature, see,

e.g., (Himmelspach, 2009), is that a simulation model
can be expressed either in a general purpose program-
ming language or in a specialized simulation language.
However, the term “model” in simulation model typical-
ly refers to a low-level computer program rather than a
higher-level representation expressed in a diagrammatic
modeling language. In a modeling and simulation pro-
ject, despite the fact that “modeling” is part of the disci-
pline’s name, often no information or process models are
produced, but rather the modeler jumps from her mental
model to its implementation in some target technology
platform. Clearly, as in IS/SE, making conceptual mod-
els and design models is important for several reasons:
as opposed to a low-level computer program, a high-lev-
el model is more comprehensible and easier to commu-
nicate, share, reuse, maintain and evolve. Furthermore, it
can also be used for obtaining platform-specific imple-
mentation code, possibly with the help of model trans-
formations and code generation.
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Due to their expressiveness and wide adoption as
modeling standards, UML and BPMN seem the most ap-
propriate choices as information and process modeling
languages for a model-based simulation engineering ap-
proach. However, since they have not been designed for
this purpose, we may have to restrict, modify and extend
them in a suitable way.

Several authors, e.g., (Wagner, Nicolae, & Werner,
2009), (Cetinkaya, Verbraeck, & Seck, 2011), and (Ong-
go & Karpat, 2011), have proposed to use BPMN for
Discrete Event Simulation (DES) modeling and for
agent-based modeling. However, process modeling in
general is much less understood than information mod-
eling, and there are no guidelines and no best practices
how to use BPMN for simulation modeling. Schruben
(1983), with his Event Graph diagram language, has pi-
oneered the research on process modeling languages for
DES based on the modeling concept of event types and
the operational semantics concept of event scheduling
with a future events list. Remarkably, Event Graphs cor-
respond to a fragment of BPMN (without Activities and
Pools), which indicates the potential of BPMN as a basis
of a general process modeling language for DES.

This tutorial article extends and improves the mod-
eling approach presented in (Wagner, 2017b). In par-
ticular, the BPMN-based process design modeling ap-
proach has been revised and refined by using a variant
of BPMN, called Discrete Event Process Modeling No-
tation (DPMN), which is discussed in Section 5.

This first part of the tutorial presents the Object-
Event Modeling (OEM) paradigm and an OEM approach
for developing basic discrete event simulations. First,
short introductions to model-driven engineering, to in-
formation modeling with UML class diagrams, and to
process modeling with BPMN and DPMN process dia-
grams are presented. Next, two examples are provided
to illustrate how to apply the OEM paradigm to devel-
oping discrete event simulations. In Part II of this tuto-
rial, we discuss the more advanced modeling concepts
of activities and GPSS/SIMAN/Arena-style Processing
Networks where work objects “flow through the system”
by entering it through an arrival event at an entry node,
then passing one or more processing nodes, where pro-
cessing activities are being performed, and finally leav-
ing it through a departure event at an exit node. Finally,
Part III will show how to add the modeling concepts of
agents with perceptions, actions and beliefs, resulting in
a general agent-based DES modeling framework.

In the OEM paradigm, the relevant object types and
event types are described in an information model, which
is the basis for making a process model. A modeling ap-
proach that follows the OEM paradigm is called an OEM
approach. Such an approach needs to choose, or define,
an information modeling language and a process mod-
eling language. Possible choices are Entity Relationship

Diagrams or UML Class Diagrams for information mod-
eling, and UML Activity Diagrams or BPMN Process
Diagrams for process modeling.

We propose an OEM approach based on UML Class
Diagrams for conceptual information modeling and in-
formation design modeling, as well as BPMN Process
Diagrams for conceptual process modeling and DPMN
Process Diagrams for process design modeling. In the
proposed approach, object types and event types are
modeled as special categories of classes in a UML Class
Diagram. Random variables are modeled as a special
category of class-level operations constrained to comply
with a specific probability distribution such that they can
be implemented as static methods of a class. Queues are
not modeled as objects, but rather as ordered associa-
tion ends, which can be implemented as collection-val-
ued reference properties. Finally, event rules, which in-
clude event routines, are modeled both as BPMN/DPMN
process diagrams and in pseudo-code such that they can
be implemented in the form of special onEvent methods
of event classes.

An OEM approach results in a simulation design
model that has a well-defined operational semantics, as
shown in (Wagner, 2017a). Such a model can, in prin-
ciple, be implemented with any object-oriented (OO)
simulation technology. However, a straightforward im-
plementation can only be expected from a technology
that implements the Object-Event Simulation (OES) par-
adigm proposed in (Wagner, 2017a), such as the OES
JavaScript (OESjs) framework presented in (Wagner,
2017c).

There are two examples of systems, which are para-
digmatic for DES (and for operations research): service/
processing systems with queues (also called “queuing
networks”) and inventory management systems. Howev-
er, neither of them has yet been presented with elabo-
rate information and process models in tutorials or text-
books. In this tutorial, we show how to make information
and process models of an inventory management system
and of a service system, and how to code them using the
JavaScript-based simulation framework OESjs.

2 What Is Discrete Event Simulation?
The term Discrete Event Simulation (DES) has been es-
tablished as an umbrella term subsuming various kinds
of computer simulation approaches, all based on the gen-
eral idea of modeling entities/objects and events. In the
DES literature, it is often stated that DES is based on the
concept of “entities flowing through the system” (more
precisely, through a “queueing network”). This is the
paradigm of an entire class of simulation software in the
tradition of GPSS (Gordon, 1961) and SIMAN/Arena
(Pegden & Davis, 1992). However, this paradigm char-
acterizes a special (yet important) class of DES only, it
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does not apply to all discrete dynamic systems.
In Ontology, which is the philosophical study of

what there is, entities (also called individuals) are distin-
guished from entity types (called universals). There are
three fundamental categories of entities:

1. objects ,
2. tropes , which are existentially dependent entities

such as the qualities and dispositions of objects and
their relationships with each other, and

3. events .

These ontological distinctions are discussed, e.g., by
Guizzardi and Wagner (2010a, 2010b, 2013).

While the concept of an event is often limited to in-
stantaneous events in the area of DES, the general con-
cept of an event, as discussed in philosophy and in many
fields of computer science, includes composite events
and events with non-zero duration.

A discrete event system (or discrete dynamic system)
consists of

• objects (of various types) having a state (consisting
of qualities) and dispositions,

• events (of various types) triggering certain disposi-
tions of objects participating in them,

such that the states of affected objects may be changed
by events according to the dispositions triggered by
them. It is natural to consider the concept of discrete
events, occurring at times from a discrete set of time
points.

For modeling a discrete event system as a state tran-
sition system, we have to describe its

1. object types , e.g., in the form of classes of an ob-
ject-oriented language;

2. event types , e.g., in the form of classes of an ob-
ject-oriented language;

3. causal regularities (disposition types) e.g., in the
form of event rules.

Any DES formalism has one or more language elements
that allow specifying event rules representing causal reg-
ularities. These rules specify, for any event type, the state
changes of objects and the follow-up events caused by
the occurrence of an event of that type, thus defining the
dynamics of the transition system. Unfortunately, this is
often obscured by the standard definitions of DES that
are repeatedly presented in simulation textbooks and tu-
torials.

According to Pegden (2010), a simulation modeling
worldview provides “a framework for defining a system
in sufficient detail that it can be executed to simulate the
behavior of the system”. It “must precisely define the dy-
namic state transitions that occur over time”. Pegden ex-
plains that the 50 year history of DES has been shaped

by three fundamental paradigms: Markowitz, Hausner,
and Karr (1962) pioneered the event worldview with
SIMSCRIPT, Gordon (1961) pioneered the processing
network worldview with GPSS, and Dahl and Nygaard
(1966) pioneered the object worldview with Simula. Peg-
den characterizes these paradigms in the following way:

Event worldview: The system is viewed as a series of
instantaneous events that change the state of the system
over time. The modeler defines the events in the system
and models the state changes that take place when those
events occur. According to Pegden, the event world-
view is the most fundamental worldview since the other
worldviews also use events, at least implicitly.

Processing Network worldview: The system under
investigation is described as a processing network where
“entities flow through the system” (or, more precisely,
work objects are routed through the network) and are
subject to a series of processing steps performed at pro-
cessing nodes through processing activities, possibly re-
quiring resources and inducing queues of work objects
waiting for the availability of resources (processing net-
works have been called “queueing networks” in Opera-
tions Research). This approach allows high-level model-
ing with semi-visual languages and is therefore the most
widely used DES approach nowadays, in particular in
manufacturing industries and service industries. Simula-
tion platforms based on this worldview may or may not
support object-oriented modeling and programming.

Object worldview: The system is modeled by de-
scribing the objects that make up the system. The system
behavior emerges from the “interaction” of these objects.

All three worldviews lack important conceptual el-
ements. The event worldview does not consider objects
with their (categorical and dispositional) properties. The
processing network worldview neither considers events
nor objects. And the object worldview, while it considers
objects with their categorical properties, does not con-
sider events. None of the three worldviews includes
modeling the dispositional properties of objects with a
full-fledged explicit concept of event rules.

The event worldview and the object worldview can
be combined in approaches that support both objects and
events as first-class citizens. This seems highly desir-
able because (1) objects (and classes) are a must-have in
today’s state-of-the-art modeling and programming, and
(2) a general concept of events is fundamental in DES, as
demonstrated by the classical event worldview. We use
the term object-event worldview for any DES approach
combining OO modeling and programming with a gen-
eral concept of events.

3 Model-Driven Engineering
Model-Driven Engineering (MDE), also called model-
driven development, is a well-established paradigm in
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Different 
Platforms

Different 
Solutions 
(Design 
Choices)

Conceptual 
Model

Implementation 
Model 1-1

Design Model 1

Design Model 2

Implementation 
Model 1-2

Implementation 
Model 1-3

Implementation 
Model 2-1

Figure 1. From a conceptual model via design models to implementation models.

IS/SE. Since simulation engineering can be viewed as
a special case of software engineering, it is natural to
apply the ideas of MDE also to simulation engineering.
There have been several proposals of using an MDE ap-
proach in Modeling and Simulation (M&S), see, e.g., the
overview given in (Cetinkaya & Verbraeck, 2011).

In MDE, there is a clear distinction between three
kinds of models as engineering artifacts created in the
analysis, design and implementation phases of a devel-
opment project:

1. domain models (also called conceptual models),
which are solution-independent,

2. design models, which represent platform-indepen-
dent solution designs,

3. implementation models, which are platform-specif-
ic.

Domain models are solution-independent descriptions of
a problem domain produced in the analysis phase. We
follow the IS/SE usage of the term “conceptual model”
as a synonym of “domain model”. However, in the M&S
literature there are diverging proposals how to define the
term “conceptual model”, see, e.g., (Guizzardi & Wag-
ner, 2012) and (Robinson, 2013). A domain model may
include both descriptions of the domain’s state structure
(in conceptual information models) and descriptions of
its processes (in conceptual process models). They are
solution-independent, or “computation-independent”, in
the sense that they are not concerned with making any
system design choices or with other computational is-
sues. Rather, they focus on the perspective and language
of the subject matter experts for the domain under con-
sideration.

In the design phase, first a platform-independent de-

sign model, as a general computational solution, is de-
veloped on the basis of the domain model. The same do-
main model can potentially be used to produce a num-
ber of (even radically) different design models. Then,
by taking into consideration a number of implementation
issues ranging from architectural styles, nonfunctional
quality criteria to be maximized (e.g., performance,
adaptability) and target technology platforms, one or
more platform-specific implementation models are de-
rived from the design model. These one-to-many rela-
tionships between conceptual models, design models and
implementation models are illustrated in Figure 1.

In the implementation phase, an implementation
model is coded in the programming language of the tar-
get platform. Finally, after testing and debugging, the
implemented solution is then deployed in a target envi-
ronment.

A model for a software (or information) system,
which may be called a “software system model”, does
not consist of just one model diagram including all view-
points or aspects of the system to be developed (or to be
documented). Rather it consists of a set of models, one
(or more) for each viewpoint. The two most important
viewpoints, crosscutting all three modeling levels: do-
main, design and implementation, are

1. information modeling , which is concerned with
the state structure of the domain, design or imple-
mentation;

2. process modeling , which is concerned with the dy-
namics of the domain, design or implementation.

In the computer science field of database engineering,
which is only concerned with information modeling, do-
main information models have been called “conceptual
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name
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people
1..*

mother 1

+getSSN() : Integer
+setSSN(in ssn : Integer)
+getName() : String
+setName(in n : String)
+get...()
+set...()
+getAge() : Integer

-ssn : Integer {id}
-name : String
-dateOfBirth : Date
-income : Decimal
-mother : Person

Person

Conceptual 
Information Model

OO Class Model

getAge() : Integer

ssn : Integer {id}
name : String
dateOfBirth : Date
income : Decimal

Person

1..*

mother 1

Information Design 
Model

+getSsn() : int
+setSsn(in ssn : int)
+getName() : string
+setName(in name : string)
+get...()
+set...()
+getAge() : int

-ssn : int {id}
-name : string
-dateOfBirth : date
-income : double
-mother : Person*

Person

C++ Class Model

Figure 2. From a conceptual information model via a design model to OO and C++ class models.

models”, information design models have been called
“logical design models”, and database implementation
models have been called “physical design models”. In-
formation implementation models are called data models
or class models. So, from a given information design
model, we may derive an SQL data model, a Java class
model and a C# class model.

Examples of widely used languages for information
modeling are Entity Relationship (ER) Diagrams and
UML Class Diagrams. Since the latter subsume the for-
mer, we prefer using UML class diagrams for making
all kinds of information models, including SQL database
models.

Examples of widely used languages for process mod-
eling are (Colored) Petri Nets, UML Sequence Dia-
grams, UML Activity Diagrams and the BPMN. Notice
that there is more agreement on the right concepts for
information modeling than for process modeling, as in-
dicated by the much larger number of different process
modeling languages. We claim that this reflects a lower
degree of understanding the nature of events and
processes compared to understanding objects and their
relationships.

Some modeling languages, such as UML Class Di-
agrams and BPMN, can be used on all three modeling
levels in the form of tailored variants. Other languages
have been designed for being used on one or two of these
three levels only. For instance, Petri Nets cannot be used
for conceptual process modeling, since they lack the re-
quired expressiveness.

We illustrate the distinction between the three mod-
eling levels with an example in Figure 2. In a simple
conceptual information model of people, expressed as a
UML class diagram, we require that any person has ex-
actly one mother, expressed by a corresponding binary
many-to-one association, while we represent this associ-
ation with a corresponding reference property mother in

the OO and C++ class models. Also, we may not care
about the datatypes of attributes in the conceptual model,
while we do care about them in the design model, where
we use platform-independent datatype names (such as
Decimal ), and in the C++ class model where we use
C++ datatypes (such as double ). Following OO pro-
gramming conventions, we add get and set methods for
all attributes, and we specify the visibility private (sym-
bolically -) for attributes and public (symbolically +) for
methods, in the OO class model. Finally, in the C++
class model, we use the pointer type Person* instead
of Person for implementing a reference property.

Model-driven simulation engineering is based on the
same kinds of models as model-driven software engi-
neering: going from a domain model via a design model
to an implementation model for the simulation platform
of choice (or to several implementation models if there
are several target simulation platforms). The specific
concerns of simulation engineering, like, e.g., the con-
cern to capture certain parts of the overall system dy-
namics with the help of random variables, do not affect
the applicability of MDE principles. However, they de-
fine requirements for the modeling languages to be used.

4 Information Modeling with UML
Class Diagrams
Conceptual information modeling is mainly concerned
with describing the relevant entity types of a real-world
domain and the relationships between them, while in-
formation design and implementation modeling is con-
cerned with describing the logical (or platform-indepen-
dent) and platform-specific data structures (in the form
of classes) for designing and implementing a software
system or simulation. The most important kinds of rela-
tionships between entity types to be described in an in-
formation model are associations, which are called “re-

Information and Process Modeling for Simulation – Part I

1:5 / 1:27



lationship types” in ER modeling, and subtype/super-
type relationships, which are called “generalizations” in
UML. In addition, one may model various kinds of part-
whole relationships between different kinds of aggregate
entities and component entities, but this is an advanced
topic that is not covered in this tutorial.

As explained in the introduction, we are using the vi-
sual modeling language of UML Class Diagrams for in-
formation modeling. In this language, an entity type is
described with a name, and possibly with a list of prop-
erties and operations (called methods when implement-
ed), in the form of a class rectangle with one, two or
three compartments, depending on the presence of prop-
erties and operations. Integrity constraints, which are
conditions that must be satisfied by the instances of a
type, can be expressed in special ways when defining
properties or they can be explicitly attached to an entity
type in the form of an invariant box.

An association between two entity types is ex-
pressed as a connection line between the two class rec-
tangles representing the entity types. The connection line
is annotated with multiplicity expressions at both ends. A
multiplicity expression has the form m..n where m is a
non-negative natural number denoting the minimum car-
dinality, and n is a positive natural number (or the special
symbol * standing for unbounded) denoting the maxi-
mum cardinality, of the sets of associated entities. Typ-
ically, a multiplicity expression states an integrity con-
straint. For instance, the multiplicity expression 1..3
means that there are at least 1 and at most 3 associated
entities. However, the special multiplicity expression
0..* (also expressed as * ) means that there is no con-
straint since the minimum cardinality is zero and the
maximum cardinality is unbounded.

For instance, the model shown in Figure 3 describes
the entity types Shop and Delivery, and it states that

1. there are two classes: Shop and Delivery, repre-
senting entity types;

2. there is a one-to-many association between the
classes Shop and Delivery, where a shop is the
receiver of a delivery.

Shop

receiver

1 *

Delivery

Figure 3. The entity types Shop and Delivery.

Using further compartments in class rectangles, we can
add properties and operations. For instance, in the model
shown in Figure 4, we have added

1. the properties name and stockQuantity to Shop and
quantity to Delivery,

2. the instance-level operation onEvent to Deliv-
ery,

3. the class-level operation leadTime to Delivery.

name : String
stockQuantity : Integer

Shop receiver

1 *
onEvent()
leadTime() : Decimal

quantity : Integer

Delivery

Figure 4. Adding properties and operations.

Notice that in Figure 4, each property is declared togeth-
er with a datatype as its range. Likewise, operations are
declared with a (possibly empty) list of parameters, and
with an optional return value type. When an operation
(or property) declaration is underlined, this means that
it is class-level instead of instance-level. For instance,
the underlined operation declaration leadTime():
Decimal indicates that leadTime is a class-level opera-
tion that does not take any argument and returns a deci-
mal number.

We may want to define various types of integrity
constraints for better capturing the semantics of entity
types, properties and operations. The model shown in
Figure 5 contains an example of a property constraint
and an example of an operation constraint. These types
of constraints can be expressed within curly braces ap-
pended to a property or operation declaration. The key-
word id in the declaration of the property name in
the Shop class expresses an ID constraint stating that
the property is a standard identifier, or primary key, at-
tribute. The expression Exp(0.5) in the declaration of
the random variable operation leadTime in the De-
livery class denotes the constraint that the operation
must implement the exponential probability distribution
function with event rate 0.5.

name : String {id}
stockQuantity : Integer

Shop receiver

1 *
onEvent()
leadTime() : Decimal {Exp(0.5)}

quantity : Integer

Delivery

Figure 5. Adding a property constraint and an operation
constraint.

UML allows defining special categories of modeling ele-
ments called “stereotypes”. For instance, for distinguish-
ing between object types and event types as two different
categories of entity types we can define corresponding
stereotypes of UML classes («object type» and «event
type») and use them for categorizing classes in class
models, as shown in Figure 6.
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name : String {id}
stockQuantity : Integer

«object type»
Shop

receiver

1 * onEvent()
«rv» leadTime() : Decimal {Exp(0.5)}

quantity : Integer

«event type»
Delivery

Figure 6. Object and event types as two different cate-
gories of entity types.

Another example of using UML’s stereotype feature is
the designation of an operation as a function that repre-
sents a random variable using the operation stereotype
«rv» in the diagram of Figure 6.

A class may be defined as abstract by writing its
name in italics, as in the example model of Figure 11. An
abstract class cannot have direct instances. It can only be
indirectly instantiated by objects that are direct instances
of a subclass.

For a short introduction to UML Class Diagrams, the
reader is referred to (Ambler, 2010). A good overview of
the most recent version of UML (UML 2.5) is provided
by www.uml-diagrams.org/uml-25-diagrams.html

5 Process Modeling with BPMN and
DPMN
The Business Process Modeling Notation (BPMN) is an
activity-based graphical modeling language for defining
business processes following the flow-chart metaphor. In
2011, the Object Management Group has released ver-
sion 2.0 of BPMN with an optional execution semantics
based on Petri-net-style token flows.

The most important elements of a BPMN process
model are listed in Table 1.

BPMN process diagrams can be used for making

1. conceptual process models , e.g., for documenting
existing business processes and for designing new
business processes;

2. process automation models for specific process au-
tomation platforms (that allow partially or fully au-
tomating a business process) by adding platform-
specific technical details in the form of model an-
notations that are not visible in the diagram.

However, the BPMN process diagram language has sev-
eral semantic issues and is not expressive enough for
making platform-independent computational process de-
sign models that can be used both for designing DES
models and as a general basis for deriving platform-spe-
cific process automation models.

For an introductory BPMN tutorial, the reader is re-
ferred to (BPMN 2.0 Tutorial, 2017). A good modeling
tool, with the advantages of an online solution, is the Sig-
navio Process Editor, which is free for academic use.

Ontologically, BPMN activities (or, more precisely,
activity types) are special event types. However, the sub-
sumption of activities under events is not supported by

the standard semantics of BPMN.
Another severe issue of the official BPMN (token

flow) semantics is its limitation to case handling
processes. Each start event represents a new case and
starts a new process for handling this case in isolation
from other cases. This semantics disallows, for instance,
to model processes where several cases are handled in
parallel and interact in some way, e.g., by competing for
resources. Consequently, this semantics is inadequate for
capturing the overall process of a business system with
many actors performing tasks related to many cases with
various interdependencies, in parallel.

Despite these issues, using BPMN as a basis for de-
veloping a process design modeling approach is the best
choice of a modeling language we can make, considering
the alternatives, which are either not well-defined (like
Flow Charts or “Logic Flow Diagrams”) or not suffi-
ciently expressive (Petri Nets, UML State Transition Di-
agrams, UML Activity Diagrams).

We need to adapt the language of BPMN Process Di-
agrams for the purpose of simulation design modeling
where a process model must represent a computationally
complete process specification. While we can use large
parts of its vocabulary, visual syntax and informal se-
mantics, we need to modify them for a number of model-
ing elements. The resulting BPMN variant, which is ful-
ly described in (Wagner, 2018), is called Discrete Event
Process Modeling Notation (DPMN). It may be viewed
as a BPMN-based generalization of the Event Graph di-
agrams of (Schruben 1983).

DPMN adopts and adapts the syntax and semantics
of BPMN in the following way:

1. A DPMN diagram has an underlying UML class di-
agram defining its (object and event) types.

2. DPMN Sequence Flow arrows pointing to an event
circle denote event scheduling control flows. They
must be annotated by event attribute assignments
for creating/scheduling a new event.

3. DPMN has three special forms of Text Annotation:

1. Text Annotations attached to Event circles for
declaring event rule variables,

2. Text Annotations attached to Sequence Flow
arrows for state change statements,

3. Text Annotations attached to Sequence Flow
arrows pointing to Event circles for event at-
tribute assignments.

4. DPMN has an extended form of Data Object visu-
ally rendered as rectangles with two compartments:

1. a first compartment showing an object variable
name and an object type name separated by
a colon, together with a binding of the object
variable to a specific object;

2. a second compartment containing a block of
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Table 1. Basic elements of BPMN.

Name of
element

Meaning Visual symbol(s)

Event

Something that “happens” during the course of a
process, affecting the process flow.

A Start Event is drawn as a circle with a thin border
line, while an Intermediate Event has a double border
line and an End Event has a thick border line.

Start Inter-
mediate

End

Activity

“Work that is performed within a Business Process.”
A Task is an atomic Activity, while a Sub-Process

is a composite Activity. A Sub-Process can be either in
a collapsed or in an expanded view. The latter shows
its internal process structure.

Activity

Gateway

A Gateway is a node for branching or merging control
flows. A Gateway with an "X" symbol denotes an Ex-
clusive OR-Split for conditional branching, if there are
2 or more output flows, or an Exclusive OR-Join, if
there are 2 or more input flows. A Gateway with a plus
symbol denotes an AND-Split for parallel branching, if
there are 2 or more output flows, or an AND-Join, if
there are 2 or more input flows. A Gateway can have
both input and output flows.

Sequence
Flow

An arrow expressing the temporal order of Events, Ac-
tivities, and Gateways. A Conditional Sequence Flow
arrow starts with a diamond and is annotated with a
condition (in brackets).

[condition]

Data Ob-
ject

Data Objects may be attached to Events or Activities,
providing a context for reading/writing data. A unidi-
rectional dashed arrow denotes reading, while a bidi-
rectional dashed arrow denotes reading/writing.

Event

data object

state change statements (such as attribute val-
ue assignments).

5. BPMN's temporal semantics and visual syntax dis-
tinction between Start, Intermediate and End Events
is dropped. A DPMN Event circle implicitly repre-
sents a start (or end) Event when it has no incoming
(or outgoing) Sequence Flow arrows. It represents
an intermediate Event if it has both incoming and
outgoing Sequence Flow arrows.

6. In a DPMN event rule design diagram, there is
exactly one start Event circle followed by zero or
more end Event circles, but there is no intermediate
Event circle.

7. A DPMN process design diagram consists of an
integrated set of event rule design diagrams such
that its intermediate Event circles are semantically
overloaded: in the context of an incoming Sequence
Flow arrow they denote a scheduled event to be
added to the Future Events List (FEL), while in
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the context of an outgoing Sequence Flow arrow
or an attached Data Object, they denote an event
occurrence that causes state changes and follow-
up events. The scheduled event and the resulting
event occurrence could be separated by drawing
two event circles that are connected by a Sequence
Flow arrow denoting a wait-for control flow.

8. The token flow semantics of BPMN is replaced by
the operational semantics of event rules defined in
(Wagner, 2017a).

A DPMN Event circle corresponds to an event type of
the underlying information design model and may trig-
ger both state changes, as specified in Data Object rec-
tangles attached to the Event circle, and follow-up
events, as specified by (possibly conditional) event
scheduling Sequence Flow arrows.

6 Example 1: An Inventory System
We consider a simple case of inventory management: a
shop selling one product type (e.g., one model of TVs),
such that its in-house inventory only consists of items
of that type. On each business day, customers come to
the shop and place their orders. If the ordered product
quantity is in stock, customers pay their order and the or-
dered products are handed out to them. Otherwise, the
order may still be partially fulfilled, if there are still some
items in stock. If there are no items in stock, customers
have to leave the shop without any item.

When the stock quantity falls below the reorder
point, a replenishment order is sent to the vendor for re-
stocking the inventory, and the ordered quantity is deliv-
ered 1–3 days later.

Below, a simulation of this system, based on OESjs,
can be run.

6.1 Information Modeling
How should we start the information modeling process?
Should we first model object types and then event types,
or the other way around? Here, the right order is dictated
by informational dependencies. Since events are always
associated with objects that participate in them, which
is an ontological pattern that is fundamental for DES,
see, e.g., (Guizzardi & Wagner, 2010b), we first model
object types, together with their associations, and then
add event types on top of them.

A conceptual information model describes the sub-
ject matter vocabulary used, e.g., in the system narrative,
in a semi-formal way. Such a vocabulary essentially con-
sists of names for

1. types, corresponding to classes in OO modeling, or
unary predicates in formal logic;

2. properties, corresponding to binary predicates in
formal logic;

3. associations, corresponding to n-ary predicates
(with n > 1) in formal logic.

The main categories of types are object types and event
types. A simple form of conceptual information model
is obtained by providing a list of each of them, while a
more elaborated model, preferably in the form of a UML
class diagram, also defines properties and associations,
including the participation of objects (of certain types) in
events (of certain types).

An information design model is normally derived
from a conceptual information model by choosing the
design-relevant types of objects and events and enrich
them with design details, while dropping other object
types and event types not deemed relevant for the simu-
lation design. Adding design details includes specifying
property ranges as well as adding multiplicity and other
types of constraints.

In addition to these general information modeling is-
sues, there are also a few issues, which are specific for
simulation modeling:

1. Due to the ontological pattern of objects participat-
ing in events , we always have special (participa-
tion) associations between object classes and event
classes. Typically, they will have role names at the
association ends that touch the object classes. These
role names will be turned into names of correspond-
ing reference properties of the event class in an OO
class model, allowing the event rule method on-
Event to access the properties of the objects par-
ticipating in an event both for testing conditions and
for applying state changes.

2. Certain simulation variables may be subject to ran-
dom variation, so they can be considered to be ran-
dom variables with an underlying probability distri-
bution that is sampled by a corresponding method
stereotyped «rv» for categorizing it as a random
variate sampling method. The underlying probabil-
ity distribution can be indicated in the model dia-
gram by appending a symbolic expression, denot-
ing a distribution (with parameter values), to the
method definition clause. For instance, U(1,6) may
denote the uniform distribution with lower bound 1
and upper bound 6, while Exp(1.5) may denote the
exponential distribution with event rate 1.5.

3. The information design model must distinguish be-
tween exogenous and caused (or endogenous) event
types. For any exogenous event type, the recurrence
of events of that type must be specified, typically
in the form of a random variable, but in some cases
it may be a constant (like 'on each Monday'). The
recurrence defines the elapsed time between two
consecutive events of the given type (their inter-oc-
currence time). It can be specified within the event
class concerned in the form of a special method
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name
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name

single product shops

* *

order from

name

vendors

* 1

order from

name

product types stock quantity
reorder point
target inventory

inventories1
1

1

1

Figure 7. A first version conceptual information model, describing object types, only.

with the predefined name 'recurrence'.
4. The queues of a queueing system are modeled in the

form of ordered association ends, which represent
ordered-collection-valued reference properties. For
instance, in our service desk model shown in Fig-
ure 21, there is an association between the classes
ServiceDesk and Customer with an ordered
association end named waitingCustomers rep-
resenting a queue. The annotation {ordered}
means that the collection of Customer instances
associated with a particular ServiceDesk is a
linearly ordered set that allows to retrieve (or
“pop”) the next customer from the waitingCus-
tomers queue.

6.1.1 Conceptual Information Model

We can extract the following candidates for object types
from the problem description by identifying and analyz-
ing the domain-specific noun phrases: shops (for being
more precise, we also say single product shops), prod-
ucts (or items), inventories, customers, customer orders,
replenishment orders, and vendors. Since noun phrases
may also denote events (or event types), we need to take
another look at our list and drop those noun phrases. We
recognize that customer orders and replenishment orders
denote messages or communication events, and not or-
dinary objects. This leaves us with the five object types
described in the diagram shown in Figure 7.

Later, when we make a design for a simulation model
we make several simplifications based on our simulation
research questions. For instance, we may abstract away
from the object types products and vendors . But
in a conceptual system model, we include all entity types
that are relevant for understanding the real-world sys-
tem, independently of the simplifications we may later
make in the solution design and implementation. This
approach results in a model that can be re-used in other
simulation projects with the same problem domain, but

with different research questions.
Notice that we have also modeled the following as-

sociations between these five object types:

1. The (named) many-to-many association customers–
order-from –shops.

2. The (un-named) one-to-one association shops–
have –products.

3. The (un-named) one-to-one association shops–
have –inventories.

4. The (named) many-to-one association shops– or-
der-from –vendors.

The second association is one-to-one because we are as-
suming that our shops only sell a single product, while
the third association is one-to-one because we assume
that our shops only have one inventory for their single
product.

We have also added some attributes to the model’s
object types, such as a name attribute for customers,
shops, products and vendors, and a reorder point as well
as a stock quantity attribute for inventories. Some of
these attributes can be found in the problem description
(such as reorder point), while others have to be inferred
by common sense reasoning (such as target inventory for
the quantity to which the inventory is to be restocked).

In the next step, we add event types. We have already
identified customer orders and replenishment orders as
two potentially relevant event types mentioned as noun
phrases in the problem description. We can try to extract
the other potentially relevant event types from the text,
typically by considering the verb phrases, such as “pay
order”, “hand out product”, and “deliver”. For getting
the names of our event types, we nominalize these verb
phrases. So we get customer payments, product han-
dovers and deliveries. Finally, for completing the model,
we guess additional event types using domain expertise
and common sense. For instance, we can imagine that a
delivery by the vendor leads to a corresponding payment
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*

*
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Figure 8. The complete conceptual information model.

by the shop, so we also need a payments event type.
We add these event types to our model, together

with their participation associations with involved object
types, now distinguishing class rectangles that denote
event types from those denoting object types with the
help of UML stereotypes, as shown in Figure 8. For visu-
al clarity, we use classes without a stereotype for repre-
senting object types (so we can omit the stereotype «ob-
ject type» since it is the default).

Notice that a participation association between an
object type and an event type is typically one-to-many,
since an event of that type has typically exactly one par-
ticipating object of that type, and, vice versa, an object
of that type typically participates in many events of that
type.

Notice that, for brevity, we omitted the event type for
the shop declining a customer order. Even so, the model
may seem quite large for a problem like inventory man-
agement. However, in a conceptual model, we describe a
complete system including all object and event types that
are relevant for understanding its dynamics.

Typically, in a simulation design model we would
make several simplifications allowed by our research
questions, and, for instance, abstract away from the ob-
ject types products and inventories. But in a conceptual
model of the system under investigation, we include
all relevant entity types, independently of the simplifi-
cations we may later make in the solution design and
implementation. This approach results in a conceptual
model that can be re-used in other simulation projects
(with different research questions).

6.1.2 Information Design Model

We now derive an information design model from the so-

lution-independent conceptual information model shown
in Figure 8. Our design model is solution-specific be-
cause it is a computational design for the following spe-
cific research question: compute the average percentage
of lost sales (if an order quantity is greater than the cur-
rent stock level, the difference counts as a lost sale).
Such a design model is platform-independent in the
sense that it does not use any modeling element that
is specific for a particular platform, such as a Java
datatype.

In the first step, we take a decision about which ob-
ject types and event types defined in the conceptual mod-
el can be dropped in the solution design model. The goal
is to keep only those entity types in the model, which
are needed for being able to answer the research ques-
tion. One opportunity for simplification is to drop prod-
ucts and inventories because our assumptions imply that
there is only one product and only one inventory, so we
can leave them implicit and allocate their relevant attrib-
utes to the SingleProductShop class. As this class name
indicates, in the design model, we follow a widely used
naming convention: the name of a class is a capitalized
singular noun phrase in mixed case.

For simplicity, we add a lostSales attribute to the Sin-
gleProductShop class for storing the lost-sales statistics
for each shop. Alternatively, we could add a special class
for defining statistics variables.

Further analysis shows that we can drop the event
types customer payments and vendor payments, since we
do not need any payment data, and also product han-
dovers, since we do not care about the point-of-sales lo-
gistics. This leaves us with three potentially relevant ob-
ject types: customers, single product shops and vendors;
and three potentially relevant event types: customer or-
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name
stockQuantity
reorderPoint
targetInventory
lostSales

SingleProductShop

quantity

«event type»
DailyDemand

shop

1* receiver

1 * quantity

«event type»
Delivery

Figure 9. The initial information design model with attributes and associations (Step 1).

receiver1*

name : NonEmptyString
stockQuantity : NonNegativeInteger
reorderPoint : PositiveInteger
targetInventory : PositiveInteger
lostSales : Percentage

SingleProductShop

createNextEvent() : DailyDemand
recurrence() : PositiveInteger = 1
«rv» demandQuantity() : Integer = U(5,10)

quantity : PositiveInteger

«exogenous event type»
DailyDemand

shop 1*

«rv» leadTime() : Integer = Emp({1:0.2, 2:0.5, 3:0.3})

quantity : PositiveInteger

«caused event type»
Delivery

Figure 10. Adding the range of attributes and random variables (Step 2).

ders, replenishment orders and deliveries.
There is still room for further simplification. Since

for computing the percentage of lost sales, we do not
need the order quantities of individual orders, but only
the total number of ordered items, it is sufficient to mod-
el an aggregate of customer orders like the daily demand.
Consequently, we do not need to consider individual cus-
tomers and their orders. So, we can drop the object type
customers and use the aggregate event type DailyDe-
mand instead of customer orders. Since we do not need
any vendor information, we can also drop the object type
vendors.

Finally, since we can now assume that replenishment
orders are placed when a DailyDemand event has oc-
curred, implying that any replenishment order event
temporally coincides with a DailyDemand event, we can
also drop the event type replenishment orders.

Thus, the simplifications of our first design modeling
step lead to a model as shown in Figure 9.

Notice that the two associations model the partic-
ipation of the shop both in DailyDemand events and
in Delivery events, and the association end names shop
and receiver represent the reference properties DailyDe-
mand::shop and Delivery::receiver (as implied by the

corresponding association end ownership dots). These
reference properties allow to access the properties and
invoke the methods of a shop from an event, which is es-
sential for the event routine of each event type. Thus, the
ontological pattern of objects participating in events and
the implied software pattern of object reference proper-
ties in event types are the basis for defining event rou-
tines (and rules) in event types.

In the next step (step 2), we distinguish between
two kinds of event types: exogenous event types and
caused event types , and we also define for all attributes
a platform-independent datatype as their range, using
specific datatypes (such as PositiveInteger , in-
stead of plain Integer , for the quantity of a delivery),
as shown in Figure 10.

While exogenous events of a certain type occur pe-
riodically with some (typically random) recurrence,
caused events occur at times that result from the internal
causation dynamics of the simulation model. So, for any
event type adopted from the conceptual model, we
choose one of these two categories. For any exogenous
event type, we add a class-level ("static") recurrence op-
eration, which is responsible for computing the time un-

Information and Process Modeling for Simulation – Part I

1:12 / 1:27



til the next event occurs. If new exogenous events have
to be created with specific attribute assignments, like in
the case of DailyDemand events, which require a ran-
dom variate assignment to their quantity attribute, a cre-
ateNextEvent operation is defined for creating a new in-
stance of the event type as its next occurrence.

In the model shown in Figure 10, we define Daily-
Demand as an exogenous event type with a recurrence of
1, implying that an event of this type occurs on each day,
while we define Delivery as a caused event type.

6.1.3 Deriving Platform-Specific Class Models
from the Information Design Model

After choosing an object-oriented simulation platform
based on the object-event paradigm (e.g., the JavaScript-
based platform OESjs available from Sim4edu, or one of
the Java-based platforms DESMO-J, JaamSim or Any-
Logic), we can derive a platform-specific class model for
this platform from the information design model.

In the language of such a platform, there would nor-
mally be two predefined abstract foundation classes for
defining object types and event types. For instance, in
OESjs, they are called oBJECT and eVENT, each with a
set of generic properties and methods for implementing
the two stereotypes «object type» and «event type».
These two classes, with their name in italics for indicat-
ing that they are abstract, are used for deriving object
types and event types in the OESjs class models shown
in Figure 11 and Figure 12.

id[1] : number
name[0..1] : string

oBJECT

stockQuantity : NonNegativeInteger
reorderPoint : PositiveInteger
targetInventory : PositiveInteger
lostSales : Percentage

SingleProductShop

From OESjs
https://sim4edu.com

Figure 11. Defining an object class in OESjs.

onEvent() : eVENT[*]

occurrenceTime : number

eVENT

onEvent() : eVENT[*]
recurrence() : number = 1
createNextEvent() : DailyDemand
demandQuantity() : number

quantity : PositiveInteger
shop : SingleProductShop

DailyDemand

onEvent() : eVENT[*]
leadTime() : number

quantity : PositiveInteger
receiver : SingleProductShop

Delivery

From OESjs
https://sim4edu.com

Figure 12. Defining event classes in OESjs.

Notice that OESjs allows using specific datatypes, like
PositiveInteger, as the range of an attribute, while vari-
ables and functions are not explicitly typed in JavaScript,
which only has one numeric datatype ( number ), not
supporting the distinction between decimal numbers and
integers.

OESjs class models no longer contain any explicit
associations, which have been replaced with correspond-
ing reference properties (like DailyDemand::shop and
Delivery::receiver). This is the way associations are im-
plemented in OO programming.

The onEvent operation in the eVENT class is ab-
stract, as indicated by its name in italics. It requires that
any subclass provides a concrete onEvent method that
implements the event routine of the event rule associated
with the event type implemented by the eVENT subclass.
For instance, the onEvent method of the subclass Dai-
lyDemand implements the event routine of the DailyDe-
mand event rules, see Section 6.2.3. The return type de-
claration eVENT[*] means that the onEvent method
returns a set of (follow-up) events.

Notice that for handling the exogenous events of type
DailyDemand, we have added a static createNextEvent
method in DailyDemand for creating the next Daily-
Demand event by invoking both the demandQuantity
method and the recurrence method, whenever a Daily-
Demand event has occurred.

6.1.4 Coding a Platform-Specific Class Model

The classes defined in the OESjs class model shown in
Figure 12 can be directly coded as OESjs classes. For in-
stance, the object class SingleProductShop can be coded
in the following way:

var SingleProductShop = new cLASS({

Name: "SingleProductShop",

supertypeName: "oBJECT",

properties: {

"stockQuantity": {range:"NonNegativeInteger"},

"reorderPoint": {range:"NonNegativeInteger"},

"targetInventory": {range:"PositiveInteger"},

"lostSales": {range:"Percentage"}

}

});

This class just has three simple data-valued properties
(attributes), each defined with an integer range.

The event class DailyDemand can be coded in the
following way:

var DailyDemand = new cLASS({

Name: "DailyDemand",

supertypeName: "eVENT",

properties: {

"quantity": {range: "PositiveInteger"},

"shop": {range: "SingleProductShop"}

},
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methods: {

"onEvent": function () {...}

}

});

DailyDemand.recurrence = function () {...}

DailyDemand.createNextEvent = function () {...}

DailyDemand.demandQuantity = function () {...}

Notice that in the DailyDemand event class, we have a
reference property shop allowing to access the proper-
ties of the shop object that participates in a DailyDemand
event. We also have an onEvent method for imple-
menting the event rule of the DailyDemand event type.
In this method, the reference property shop can be used
for retrieving or changing the state of the shop that par-
ticipates in the DailyDemand event. We will discuss the
code of this event routine below in the section on imple-
menting the process design model.

6.2 Process Modeling
We make a conceptual process model and a process de-
sign model for the inventory management system. These
models can be expressed visually in the form of BPMN
and DPMN process diagrams and textually in the form
of event rule tables.

A conceptual process model should include the
event types identified in the conceptual information
model, and describe in which temporal sequences events
may occur, based on conditional and parallel branching.
We can do this by describing, for each of the event types
from the conceptual information model, the causal regu-
larity associated with it in the form of an event rule that
defines the state changes and follow-up events caused by
events of that type.

For simplicity, we may merge those types of events,
which can be considered to temporally coincide. This is
the case whenever an event unconditionally causes an
immediately succeeding follow-up event.

6.2.1 Making a Conceptual Process Model

Since inventory management is part of a business sys-
tem, it is natural to make a kind of business process (BP)
model describing actors and their activities, typically in
response to events, as shown in Figure 13, where we
model the two actors Customer and SingleProductShop,
together with their interactions.

Notice that this traditional-style BP model suffers
from the following BPMN deficiencies:

1. Activities/actions are not considered to be special
events.

2. There is no semantic account of the activities/ac-
tions of one actor (such as Customer) being events
for another actor (such as Single Product Shop).
In the case of outgoing message actions (“message

tasks”), like “Place order”, and their corresponding
incoming message events, like “CustomerOrder”,
this relationship can be expressed with message
flow arrows between the two actors involved, but in
the case of non-communicative actions and events
(like Customer:“Make payment” and Shop:Cus-
tomerPayment), BPMN does not support express-
ing such a relationship.

Also, in basic DES, we neither have an activity nor an
agent concept, and therefore BPMN pools denoting ac-
tors, and the distinction between an action/activity (like
“Place order”) and a corresponding event (like “Cus-
tomerOrder”) are not needed. Consequently, for our pur-
pose of making a conceptual process model for basic
DES, we do not use BPMN in the traditional BP mod-
eling way, but rather a special form of BPMN models,
without activities and without actors/swimlanes. Below,
in our discussion of a service desk model, we will show
an example of activity modeling, which requires an ex-
tended form of DES by adding an activity concept, as
proposed in (Wagner, Nicolae, & Werner, 2009).

The purpose of a conceptual process model for simu-
lation is to identify causal regularities and express them
in the form of event rules, one for each relevant type of
events, at a conceptual level. We can describe event rules
textually and visually in an event rule table like Table 2.

We can integrate these conceptual event rule models
in a conceptual process model, as shown in Figure 14.

Notice that the BPMN End Event circles used in the
event rule models may have to be converted to BPMN
Intermediate Event circles in the integrated model.

6.2.2 Process Design Model

A process design model needs to provide a computation-
ally complete specification of event rules, one for each
event type defined in the information design model. An
event rule for a given event type essentially defines a set
of (possibly conditional) state changes and a set of (pos-
sibly conditional) follow-up events triggered by an event
of that type. We show below how a computational form
of event rules can be visually expressed in DPMN dia-
grams.

Since our information design model (tailored to the
given research question of computing the lost sales sta-
tistics) only includes two event types, DailyDemand and
Delivery, we need to model the two corresponding event
rules, as in the event rule design Table 3, where these
rules are modeled textually using pseudo-code.

Notice the general structure of an event expression
like DailyDemand( sh, demQ) @ t : it starts
with the name of an event type (here: DailyDemand)
followed by a comma-separated list of event parameter
names (here, sh and demQ ), corresponding to event at-
tributes, and an occurrence time annotation @ t . The
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Figure 13. A business process model.
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order
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decrementincrement

Figure 14. The conceptual process model integrating all event rule models.

event expression is complemented with a parameter leg-
end (here, sh: SingleProductShop ) defining the
type of each event parameter.

We can also express these two rules visually using

the BPMN-based Discrete Event Process Modeling No-
tation (DPMN) defined in (Wagner, 2018), as shown in
Figure 15 and Figure 16.
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Table 2. Conceptual event rule models.

ON (event
type)

DO (event routine) Conceptual Event Rule Diagram

customer or-
der

check inventory;
if there is sufficient inventory, then product han-
dover, else customer departure

customer
order

sufficient inventory?

product
handover

customer departure

inventory

check

product han-
dover

decrement (get product from) inventory;
customer payment

product
handover

customer
payment

inventory

decrement

customer pay-
ment

customer departure
[Notice that we do not describe the increase of
the shop's cash balance due to the payment, be-
cause we focus on inventory.] customer

payment
customer
departure

replenishment
order

delivery

replenishment
order

delivery

delivery
increment inventory;
payment

delivery payment

inventory

increment
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dd: DailyDemand

sh: SingleProductShop
[sh = dd.shop]

-----------------------------------------
sh.stockQuantity := max( 0, newSQ);

if (newSQ < 0) sh.lostSales += |newSQ|

Delivery

var sQ := sh.stockQuantity
var newSQ := sQ − dd.quantity
var rp := sh.reorderPoint

quantity := sh.targetInventory − max( 0, newSQ);
receiver := sh;

+Delivery.leadTime()

[sQ > rP & newSQ <= rP]

Figure 15. A rule design model for the event type DailyDemand.

Table 3. Event rule design with pseudo-code.

ON (event expr.) DO (event routine)

DailyDemand( sh, demQ) @ t

• sh:SingleProductShop references the shop
where the DailyDemand event happens

• demQ is the daily demand quantity

var sQ := sh.stockQuantity
var newSQ := sQ - demQ
var rP := sh.reorderPoint
sh.stockQuantity := max( 0, newSQ)
if sQ > rP & newSQ <= rP then
if newSQ < 0 then

sh.lostSales += demQ - sQ
newSQ := 0

var delQ := sh.targetInventory − newSQ
schedule Delivery( sh, delQ) @ t + leadTime()

Delivery( rec, delQ) @ t

• rec:SingleProductShop references the shop
that is the receiver of the delivery

• delQ is the delivered quantity

rec.stockQuantity += delQ
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rec: SingleProductShop
[rec = d.receiver]

-----------------------------------
rec.stockQuantity += d.quantity

dd: DailyDemand

sh: SingleProductShop
[sh = dd.shop]

-----------------------------------------
sh.stockQuantity := max( 0, newSQ);

if (newSQ < 0) sh.lostSales += |newSQ|

d: Delivery

var sQ := sh.stockQuantity
var newSQ := sQ − dd.quantity
var rp := sh.reorderPoint

quantity := sh.targetInventory − max( 0, newSQ);
receiver := sh;

+Delivery.leadTime()

[sQ > rP & newSQ <= rP]

Figure 17. A process design model in the form of a DPMN diagram.

rec: SingleProductShop
[rec = d.receiver]

------------------------------------
rec.stockQuantity += d.quantity

d: Delivery

Figure 16. A rule design model for the event type De-
livery.

In general, a DPMN event rule design diagram contains
event circles with two-part names (like dd: DailyDe-
mand) specifying an event variable (like dd) and an
event type (like DailyDemand). Event circles may be as-
sociated with one or more data object rectangles (like
sh: SingleProductShop). There is exactly one start event
circle without incoming arrows, which may contain rule
variable declarations in an attached text annotation. The
data object rectangles contain state change statements
using the event variable and possibly the rule variable(s).

An event circle may have one or more outgoing ar-
rows leading to gateways or to event circles. The incom-
ing arrows to an event circle represent event schedul-
ing control flows. They must be annotated with event at-
tribute assignments and an assignment of the scheduled
event's future occurrence time t', which is typically de-
fined by adding a delay time Δ to the occurrence time t of
the triggering event. In a DPMN diagram, the occurrence
time assignment annotation t' = t + Δ can be abbreviated

by the expression +Δ, like +Delivery.leadTime() in Fig-
ure 15 above.

Notice that Delivery events trigger a state change,
but no follow-up events.

These two event rule design models can be merged
into a process design model shown in Figure 17.

6.2.3 Implementing the Process Design Model
with OESjs

The process design model specifies a set of event rules,
each of which can be implemented with OESjs by coding
its event routine in the onEvent method of the class
that represents the triggering event type. For instance,
the Delivery event rule modeled in Figure 16 can be cod-
ed as follows:

var Delivery = new cLASS({

Name: "Delivery",

supertypeName: "eVENT",

properties: {...},

methods: {

"onEvent": function () {

this.receiver.stockQuantity += this.quantity;

return []; // no follow-up events

}

}

});

Notice that while in an event rule design diagram, we de-
clare an event variable standing for the triggering event
(e.g., the variable d in Figure 16), in the corresponding
event routine onEvent we use the special OOP variable
this for the same purpose.

The DailyDemand event rule can be coded like so:
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var DailyDemand = new cLASS({

Name: "DailyDemand",

supertypeName: "eVENT",

properties: {...},

methods: {

"onEvent": function () {

var sh = this.shop,

sQ = sh.stockQuantity,

newSQ = sQ - this.quantity,

rP = sh.reorderPoint;

// update stockQuantity

this.shop.stockQuantity = Math.max( 0, newSQ);

// update lostSales if demand > stock

if (newSQ < 0) {

sim.stat.lostSales += Math.abs( newSQ);

newSQ = 0;

}

// schedule new Delivery if stock

// falls below reorder point

if (sQ > rP && newSQ <= rP) {

return [new Delivery({

occTime: this.occTime + Delivery.leadTime(),

quantity: sh.targetInventory - newSQ,

receiver: sh

})];

} else return []; // no follow-up events

}

}

});

The full code of this simulation model is available by
loading the web-based simulation https://sim4edu.com/
sims/4/ and inspecting its JavaScript code in the browser.

7 Example 2: A Service System
In our basic service system example, as implemented in
the Sim4edu simulation library, customers arrive at ran-
dom times at a service desk where they have to wait in
a queue when the service desk is busy. Otherwise, when
the queue is empty and the service desk is not busy, they
are immediately served by the service clerk. Whenever a
service is completed, the next customer from the queue,
if there is any, is invited for the service.

7.1 Information Modeling

7.1.1 Conceptual Information Model

It is straight-forward to extract four object types from the
problem description above by analyzing the noun phras-
es:

1. customers,
2. service desks,
3. service queues,
4. service clerks.

Thus, a first version conceptual information model of the
service system may look as shown in Figure 18.

Notice that it seems preferable (more natural) to sep-
arate the service queue from the service desk and not
consider the customer that is currently being served at
the service desk to be part of the queue. Conceptually,
a queue is a linearly ordered collection of objects of a
certain type with a First-In-First-Out policy: the next ob-
ject to be removed is the first object, at the front of the
queue, while additional objects are added at the end of
the queue.

Notice that we model customers and service
clerks as subclasses of people , following a general
pattern of adding a base type (or kind), such as people
, for all role classes in a model, such as customers and
service clerks . One of the benefits of applying this
pattern is that we can see that a person playing the role
of a service clerk may also play the role of a customer,
which is a special case of the general possibility that an
employee of an organization may also be a customer of
it.

After modeling all potentially relevant object types
in the first step, we model the potentially relevant event
types in a second step:

1. customer arrivals,
2. customers queuing up,
3. customers being notified/invited to move forward

to the service desk,
4. service start,
5. service end,

service desksservice queues sevice clerkscustomers

0..1*

1 1 1 1

people

Figure 18. A first version conceptual information model of a service system.
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«object type»
service desks

«object type»
service queues

«object type»
sevice clerks

«object type»
customers

0..1*

1 1 1 1

«event type»
customer arrivals

*

«event type»
customer departures

*

1

*

*

«event type»
service start

*

1

*

«event type»
service end

*

*

«event type»
queuing up

«event type»
inviting for service

1

*

1

*

*

*

«object type»
people

Figure 19. Adding event types to the conceptual information model.

6. customer departures.

The main type of association between events and objects
is participation . When adding event types to the object
types in our conceptual information model, we therefore
also model the participation types between them. For in-
stance, in Figure 19, we express that a customer arrival
event has exactly one customer and one service desk as
its participants.

In order to complete the model of Figure 19, we may
add attributes that help describing objects and events of
these types.

The reader may have noticed that, while only mod-
eling object and event types, our model does implicitly
contain an activity type composed of the two event types
“service start” and “service end”. It is well-known that,
conceptually, an activity is a composite event that is tem-
porally framed by a pair of start and end events. Conse-
quently, activity types can be implicitly included in a ba-
sic DES model by defining corresponding pairs of start
and end event types. If we would make an information
model for “DES with activities”, which will be discussed
in Part II of this tutorial, we would replace these pairs
of start and end event types with corresponding activity
types. In our example, we would replace the two event

types “service start” and “service end” with the activity
type “perform service”.

7.1.2 Information Design Model

We now derive platform-independent information design
models from the solution-independent conceptual infor-
mation model shown in Figure 19. A design model is so-
lution-specific because it is a computational design for
the particular purpose of a simulation development pro-
ject. For instance, the purpose may be to answer one or
more specific research questions or to teach specific con-
cepts/methods with an educational simulation. We con-
sider the following two research questions:

1. Compute the maximum queue length statistics.
2. Compute the "mean response time" statistics as the

average length of time a customer spends in the sys-
tem from arrival to departure, which is the average
waiting time plus the average service duration.

Answering research question 1 does not require to model
the waiting line as a queue consisting of individual cus-
tomers, since for keeping track of the queue length and
computing its maximum value, a queue length variable is
sufficient and there is no need to know the composition
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«rv» serviceDuration() : Decimal {Exp(0.5)}

«object type»
ServiceDesk

arrivalTime : Decimal

«object type»
Customer

0..1

waitingCustomers

*
{ordered}

«rv» recurrence() : Decimal {Exp(0.5)}

«exogenous event type»
CustomerArrival

1

*

«caused event type»
CustomerDeparture

1

*

*

Figure 21. An information design model for research question 2.

of the queue and which customer is the next one to be
served. The natural way for modeling the queue length
variable is to model it as an attribute of the object type
ServiceDesk, as in the model of Figure 20, which we also
call design model 1.

«rv» serviceDuration() : Integer {Exp{0.5}}

queueLength : NonNegativeInteger

«object type»
ServiceDesk

«rv» recurrence() : Integer {Exp{0.5}}

«exogenous event type»
CustomerArrival

serviceTime : PositiveInteger

«caused event type»
CustomerDeparture

1

*

*

Figure 20. An information design model for answering
research question 1.

Research question 2 requires modeling individual cus-
tomers, since for being able to compute the time a cus-
tomer spends in the system we need to know which cus-
tomer is next for getting the service and what is their ar-
rival time. For knowing which customer is next, we need
to model the service queue as a First-In-First-Out (FIFO)
queue, which can be expressed in a UML class diagram
in the form of an ordered association end, like wait-
ingCustomers in Figure 21. Notice that by placing
a dot on the line at this end of the association, and not

on the other end as well, we make the association uni-
directional implying the design decision that it will be
represented by a reference property with name wait-
ingCustomers in the ServiceDesk class. For be-
ing able to easily retrieve the arrival time of a customer,
which is an information item coming from the Cus-
tomerArrival event, we record it along with the cus-
tomer data, so we add a corresponding attribute to the
Customer class. The resulting design model 2 is shown
in Figure 21.

Concerning the event types described in the concep-
tual information model, the goal is to keep only those
that are really needed in the design model. This question
is closely related to the question, which types of state
changes and follow-up events have to be modeled for be-
ing able to answer the research question(s).

For both research questions, we need to keep track of
changes of the queue length and in the case of research
question 2, we also need to be able to add up the queue
waiting time and the service duration for each customer.
For keeping track of queue length changes, we need to
consider all types of events that may change the queue
length: customer arrivals and customer departures. For
being able to add up the queue waiting time and the ser-
vice duration, we need to catch service start and service
end events.

After identifying the relevant event types, we can
look for further simplification opportunities by analyz-
ing their possible temporal coincidence. Clearly, we can
consider customer departures to occur immediately after
the corresponding service end events, without having
any effects that could not be merged. Therefore, we can
drop service end events, and take care of their effects
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when handling the related customer departure event.
In addition, we can drop service start events, since

they temporally coincide with customer arrivals when
the queue is empty, or otherwise (when the queue is
not empty) they coincide with service end (and, hence,
with customer departure) events, because each service
end event causes a new service start event as long as the
queue is not empty.

As a result of the above considerations, we only keep
the following two types of events from the conceptual
model:

1. CustomerArrival having two participation as-
sociations representing the reference properties: (a)
customer with the class Customer as range,
and (b) serviceDesk with the class Ser-
viceDesk as range. As an exogenous event type,
CustomerArrival has a recurrence func-
tion representing a random variable for computing
the time in-between two subsequent event occur-
rences.

2. CustomerDeparture having one participation
association with ServiceDesk representing the
reference property serviceDesk .

Notice that, for simplicity, we consider the customer that
is currently being served to be part of the queue. In this
way, in the simulation program, we can check if the ser-
vice desk is busy by testing if the length of the queue is
greater than 0.

An alternative approach would be not considering
the currently served customer as part of the queue, but
rather use a Boolean attribute isBusy for being able to
keep track if the service desk is still busy with serving a
customer.

In an information design model we distinguish be-
tween two kinds of event types: exogenous event types
and caused event types . While exogenous events of a
certain type occur periodically, typically with some ran-
dom recurrence that can be modeled with a probability
distribution, caused events occur at times that result from
the internal causation dynamics of the simulation. So, for
any event type adopted from the conceptual model, we
have to make a decision if we model it as an exogenous
or as a caused event type, and for any exogenous event
type, we specify a recurrence operation (typically a ran-
dom variable) in the information design model.

In both model 1 and model 2, we define Cus-
tomerArrival as an exogenous event type with a
recurrence function that implements a random vari-
able based on the exponential distribution with event rate
0.5, symbolically expressed as Exp(0.5), while we define
CustomerDeparture as a caused event type.

Notice that we have modeled the random duration
of a service with the help of the random variable oper-

ation serviceDuration() shown in the third com-
partment of the ServiceDesk class, based on the ex-
ponential distribution function Exp(0.5). Notice also that
in our design we do not need the participation associa-
tion between CustomerDeparture and Customer
since for any customer departure event the customer con-
cerned can be retrieved by getting the first item from the
waitingCustomers queue.

7.1.3 Deriving an OESjs Class Model from an In-
formation Design Model

We derive an OESjs class model, shown in Figure 22 and
Figure 23, for the object types and event types defined in
the design model of Figure 21.

serviceDuration() : number

waitingCustomers : array( Customer)

ServiceDesk
arrivalTime : number

Customer

id[1] : number
name[0..1] : string

oBJECT

From the OESjs framework
see http://sim4edu.com

Figure 22. Defining object types in OESjs.

onEvent() : eVENT[*]

occurrenceTime : number

eVENT

onEvent() : eVENT[*]
recurrence() : number

customer : Customer
serviceDesk : ServiceDesk

CustomerArrival

onEvent() : eVENT[*]

serviceDesk : ServiceDesk

CustomerDeparture

From OESjs, see
http://sim4edu.com

Figure 23. Defining event types in OESjs.

Notice that in the OESjs class model, associations are
represented by corresponding reference properties (like
ServiceDesk::waitingCustomers and CustomerAr-
rival::serviceDesk).

7.1.4 Coding the OESjs Class Model

The object class ServiceDesk defined in the OESjs class
model shown in Figure 22 can be coded as follows:

var ServiceDesk = new cLASS({

Name: "ServiceDesk",

supertypeName: "oBJECT",

properties: {

"waitingCustomers": {

range: "Customer",

label: "Waiting customers",
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Table 4. Conceptual event rule models for the service system example.

ON
(event
type)

DO (event routine) Conceptual Event Rule Diagram

customer
arrival

the queue (length) is incremented;
if there is no one else in the queue (queue length
= 1), the service for the newly arrived customer
starts

customer
arrival

service start

queue

increment

[queue length = 1]

service
start

service end

service
end

customer departure

service end customer
departure

customer
departure

the queue (length) is decremented; if there is still
someone in the queue (queue length > 0), the next
service starts

queue

customer
departure

service start

decrement

[queue length > 0]

minCard: 0,

maxCard: Infinity}

}

});

ServiceDesk.serviceDuration = function () {

return rand.exponential( 0.5);

};

7.2 Process Modeling

7.2.1 Conceptual Process Model

For brevity, we show the conceptual event rule models
only for a selection of the event types from the concep-

tual information model.
The individual event rule models shown in Table 4

can be integrated with each other as shown in Figure
24 where we have to express the event types “service
start”, “service end” and “customer departure” in the
form of BPMN’s intermediate events for complying with
the BPMN syntax.
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Table 5. The event rule design table for the service system.

ON (event expr.) DO (event routine)

CustomerArrival( c, sd) @ t

• c:Customer references the arrived customer
• sd:Servicedesk references the service desk where the new cus-

tomer arrived

sd.waitingCustomers.push(c)
if sd.waitingCustomers.length = 1 then
schedule CustomerDeparture( sd) @
(t + ServiceDesk.serviceDuration())

CustomerDeparture( sd) @ t

• sd:Servicedesk references the service desk from where the cus-
tomer departs

sd.waitingCustomers.pop()
if sd.waitingCustomers.length > 0 then
schedule CustomerDeparture( sd) @
(t + ServiceDesk.serviceDuration())

service start service end

customer arrival

queue

customer
departure

increment decrement

[queue length > 0]

[queue length = 1]

Figure 24. A conceptual process model integrating the
event rule diagrams of Table 4.

If we would make a process model for a form of basic
DES extended with activities, which will be discussed in
Part II of this tutorial, we would replace the two event
types “service start” and “service end” with the activity
type “perform service” resulting in the model depicted in
Figure 25.

customer arrival

queue

customer
departure

perform
service

[queue length > 0]

increment decrement

[queue length = 1]

Figure 25. The model of Figure 24 with an activity re-
placing the start/end event pair.

7.2.2 Making a Process Design Model

In the process design model, we only need to include two
event rules, one for CustomerArrival and one for Cus-
tomerDeparture events, since only these two event types
have been included in the information design model in
Figure 21.

These two event rule design models are visually ex-
pressed in the DPMN diagrams shown in Figure 26 and
Figure 27.

sd: ServiceDesk
[sd = ca.serviceDesk]
---------------------------

PUSH ca.customer TO
sd.waitingCustomers

ca: Customer
Arrival

Customer
Departure

[ sd.waitingCustomers.
length = 1 ]

+ServiceDesk.
serviceDuration()

Figure 26. A DPMN design model for the customer ar-
rival event rule.
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sd: ServiceDesk
[sd = ca.serviceDesk]
---------------------------

PUSH ca.customer TO
sd.waitingCustomers

ca:Customer
Arrival

sd: ServiceDesk
[sd = cd.serviceDesk]
----------------------------

POP FROM
sd.waitingCustomers

cd:Customer
Departure

[ sd.waitingCustomers.
length = 1 ]

+ServiceDesk.
serviceDuration() [ sd.waitingCustomers.

length > 0 ]

+ServiceDesk.
serviceDuration()

Figure 28. A DPMN process design model integrating the two rule design models.

sd: ServiceDesk
[sd = cd.serviceDesk]
----------------------------

POP FROM
sd.waitingCustomers

cd:Customer
Departure

[ sd.waitingCustomers.
length > 0 ]

+ServiceDesk.
serviceDuration()

Figure 27. A DPMN design model for the customer de-
parture event rule.

These two event rule design models can be merged into
a process design model shown in Figure 28.

Notice that since sd.waitingCustomers de-
notes a queue, we use the queue operations PUSH and
POP in the state change statements within the sd:Ser-
viceDesk object rectangle. Generally, in DPMN, state
change statements are expressed in a state change lan-
guage that depends on the state structure of the modeled
system. Typically, this will be an object-oriented system
state structure where basic state changes consist of at-
tribute value changes as well as creations and destruc-
tions of links between objects.

7.2.3 Implementing the Process Design Model
with OESjs

The event rules specified by the process design model
can be implemented with OESjs by coding its event rou-
tine in the onEvent method of the class that represents
the triggering event type. For instance, the CustomerAr-
rival event rule modeled in Figure 26 can be coded as
follows:

var CustomerArrival = new cLASS({

Name: "CustomerArrival",

supertypeName: "eVENT",

properties: {...},

methods: {

"onEvent": function () {

var srvTm=0, followupEvents=[],

sd = this.serviceDesk;

// create new customer object

this.customer = new Customer(

{arrivalTime: this.occTime});

sim.addObject( this.customer);

// push new customer to the queue

sd.waitingCustomers.push( this.customer);

// if the service desk is not busy

if (sd.waitingCustomers.length === 1) {

srvTm = ServiceDesk.serviceDuration();

followupEvents.push( new CustomerDeparture({

occTime: this.occTime + srvTm,

serviceDesk: sd

}));

}

return followupEvents;

}

}

});
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The CustomerDeparture event rule can be coded like so:

var CustomerDeparture = new cLASS({

Name: "CustomerDeparture",

supertypeName: "eVENT",

properties: {...},

methods: {

"onEvent": function () {

var srvTm=0, followupEvents=[],

sd = this.serviceDesk;

// pop customer from FIFO queue

var departingCustomer = sd.waitingCustomers.shift();

// remove customer from simulation

sim.removeObject( departingCustomer);

// if there are still customers waiting

if (sd.waitingCustomers.length > 0) {

// schedule next departure

srvTm = ServiceDesk.serviceDuration();

followupEvents.push( new CustomerDeparture({

occTime: this.occTime + srvTm,

serviceDesk: sd

}));

}

return followupEvents;

}

}

});

The full code of this simulation model is available by
loading the web-based simulation https://sim4edu.com/
sims/2/ and inspecting its JavaScript code in the browser.

8 Conclusions
Combining UML class diagrams with BPMN and
DPMN process diagrams allows making visual models
for conceptualizing the problem domain of a simulation
study and for designing a simulation model. The visual
simulation design model, consisting of a UML class
model and a set of DPMN event rule models, represents
a computational specification of an abstract state ma-
chine that can be directly coded with any OOP language
or with any OO simulation technology supporting event
scheduling.

Unlike in information systems and software engi-
neering, making visual domain models and design mod-
els is not yet an established best practice in modeling and
simulation. Since these models facilitate the communica-
tion, sharing, reuse, maintenance and evolution of a sim-
ulation model, it can be expected that this will change in
the near future.

After establishing the foundational layer of an OEM
approach, based on the concepts of objects and events,
we will show how the more advanced modeling concepts
of activities and GPSS/SIMAN/Arena-style Processing
Networks can be defined on the basis of objects and
events in the second Part of this tutorial. Finally, in Part
III, we will further extend the OEM paradigm towards
agent-based modeling and simulation by adding the con-
cepts of agents with perceptions, actions and beliefs.
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