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Abstract
The first step in designing a domain-specific simulation scenario definition language is constructing its ontology.
The recently published Aviation Scenario Definition Language (ASDL) aims at providing a common platform to
specify scenarios in the aviation domain. To capture an ASDL ontology, the Web Ontology Language and the Pro-
tégé tool was utilized, which was then converted into an XML schema by means of tool automation in the Eclipse
Modeling Framework. On the other hand, the System Entity Structure (SES) provides a formal basis to represent
the ontological foundations of a domain language. Following the XML Schema representation of SES, a scenario
modeling ontology that has been recently published, we illustrate how an equivalent schema for a scenario defin-
ition language can be constructed using a domain-specific language ontology-driven approach and SES. We take
both approaches to represent the ASDL ontology and prove that the resulting schema produced from these two
approaches converge to the same result.

1 Introduction
The term “scenario” has a variety of published defini-
tions from a vast array of domains. While the term it-
self has varying meanings, two definitions represent a
scenario in the context of simulation development and
usage. First, a scenario can be defined as a description
of the hypothetical or real area, environment, means,
objectives, and events during a specified time frame
related to events of interest (GSD Product Develop-
ment Group, 2014). Second, a scenario can be defined
as a specification of conditions and situations to be
represented by a simulation environment for its pur-
pose (Durak, Topcu, Siegfried, & Oguztuzun, 2014).
Both definitions agree that a scenario is a description
of important events and conditions needed to represent
a specific order of events which, in this application,
occurs within a simulation environment. Therefore,
when developing a simulation environment which uti-
lizes these events and conditions, it is often a prerequi-
site to define the scenarios that will be executed in the
target simulation environment. This concept is known

as scenario-based development.
The Simulation Interoperability Standards Orga-

nization (SISO) released guidelines for the creation
of simulation scenarios, detailed in (NATO Modelling
and Simulation Group MSG-086, 2015). The guideline
provides detailed information regarding the develop-
ment of simulation scenarios, including an overview
of available tools and processes. According to (GSD
Product Development Group, 2014), a scenario must
be well-defined and must be complete, consistent, and
comprehensible. Failing to achieve these aspects can
lead to incomplete scenario definition and misunder-
standing regarding the scope and applications of the
simulation environment. As a result, the subsequently
designed simulation environment is prone to error and
may not reflect what the user originally intended. For
a simulation environment that is designed to execute a
specific set of scenarios, this misunderstanding can be
disastrous.

Scenario development is an important part of all
phases of the simulation environment development
process. It not only defines a specification of a sim-
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ulation run, but also provides an input for the design
and evaluation of the simulation environment itself
(Durak, Topcu, Siegfried, & Oguztuzun, 2014). Sce-
nario development can be broken down into the cre-
ation of three scenario groups: (1) operational sce-
narios, (2) conceptual scenarios, and (3) executable
scenarios. First, operational scenarios are provided by
subject-matter experts (SMEs) in the early stages of
development. These scenarios often provide a broad
description of the desired events in textual form using
natural language. For example, an operational scenario
may describe what events occur during the simulation
and in which order they should occur. Operational sce-
narios use domain-specific terminology to describe the
events, which can then be identified by the Modeling
and Simulation (M&S) expert and incorporated into
the simulation ontology. Operational scenarios must be
identified before development of the simulation envi-
ronment, as virtually all simulation requirements are
derived from these scenarios. Second, although oper-
ational scenarios provide the simulation requirements,
they are too broad to provide the details necessary
to derive a conceptual model and create a simulation
environment. A conceptual scenario adds this detail
and additional information to the operational scenar-
ios. These scenarios are often created by an M&S ex-
pert in collaboration with an SME. Although similar
to an operational scenario, conceptual scenarios should
contain all information needed for the simulation en-
vironment. In addition, instead of a purely natural lan-
guage approach, a conceptual scenario is used to create
a conceptual model, which elaborates concepts into
entities similar to UML classes. These entities contain
properties and attributes which describe their roles and
associations in the simulation environment. Finally,
once the conceptual model is complete and the simula-
tion environment is defined, executable scenarios can
be made. An executable scenario is the specification
of a specific situation providing all information nec-
essary for preparation, initialization, and execution of
a simulation environment (GSD Product Development
Group, 2014). These scenarios are ideally specified in
a way that allows them to be machine-readable and
reusable. These types of scenarios can be seen in Fig-
ure 1.

Durak et al. (Durak, Topcu, Siegfried, & Oguz-
tuzun, 2014) propose a model-driven engineering
(MDE) approach to the scenario development process
using the Eclipse Modeling Framework (EMF). Fol-
lowing MDE principles, scenario development is
viewed as the transformation of operational scenarios
(defined using natural language) to conceptual scenar-
ios (conforming to a metamodel) to executable sce-
narios (specified using a scenario specification lan-
guage) and simulation environment design (following
a specific formalism). As the development process oc-
curs, the scenario models are refined and transformed.
As a result, the proposed method requires conceptual
scenarios to be based on a metamodel which is then

Figure 1. Types of scenarios.

transformed into executable scenarios for target simu-
lation environments using a set of rules specific to the
target simulation environment. Following this method
of model-to-model or model-to-text transformations, a
conceptual scenario can be transformed into multiple
executable scenarios for multiple target simulation en-
vironments. This greatly promotes reuse and simplici-
ty among the M&S community.

During the scenario development process, each
scenario should at least specify three main compo-
nents: (1) the initial state, (2) the course of events,
and (3) the termination conditions. As the scenario
development process progresses, these three compo-
nents should be further refined and expanded. The ini-
tial state describes the situation at the beginning of the
scenario timeline and generally contains information
such as date and time, surrounding conditions, and ob-
jects. The course of events describes any pre-planned
events that occur at a specified time or in a specified
order. These events can elicit a response, such as from
a trainee using the system, or describe a change in en-
tity association or state, such as an aircraft beginning
a turn while en route. Events are often prompted by
a trigger condition and each event injects changes to
the simulation scenario state to achieve a desired effect
or action. Any number of events can occur throughout
the scenario timeline. The termination conditions de-
scribe the state of the simulation environment where
the scenario can be defined as completed or terminat-
ed. This can occur via a specific event (such as a suc-
cessful landing) or other means of measurement (such
as achieving a predefined elapsed time) (GSD Product
Development Group, 2014).

Scenario-based development and the scenario de-
velopment process are complex and time-consuming.
However, a variety of tools and standards exist to help
alleviate these challenges. For operational scenarios,
the Distributed Simulation Engineering and Execution
Process (DSEEP) describes a generic 7-step process
for developing and executing a simulation environ-
ment. DSEEP was used by Durak et al. (Durak, Topcu,
Siegfried, & Oguztuzun, 2014) when implementing
the MDE approach to scenario development. The
Coalition-Battle Management Language (C-BML)
strives to provide a standard for specifying the course
of events within a scenario. For conceptual scenarios,
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the Base Object Model (BOM) defines a standard for
defining and reusing components of models, simula-
tions, and federations. BOM can be used as a base for
a simulation conceptual model and in the design of
scenarios for interoperable simulations. For executable
scenarios, the Military Scenario Definition Language
(MSDL) is the most well-known standard for specify-
ing executable scenarios in the military domain (GSD
Product Development Group, 2014).

The American Institute of Aeronautics and Astro-
nautics (AIAA) Modeling and Simulation Technical
Committee (MSTC) recently launched a working
group towards the development of a standard sim-
ulation scenario definition language for the aviation
domain. However, there are multitudes of challenges
which are well introduced in (Jafer & Durak, 2017).
First to mention is the complexity of the aviation sys-
tems which comes from the large number of systems/
subsystems involved, their deep hierarchical system
structures, and complicated interrelations and inter-de-
pendencies. Simulation scenario definition conclusive-
ly inherits this complexity. Additionally, variability of
intended use adds another flavor to complexity. It cor-
responds to variability in systems modeling both in
scope and resolution. As the structure and elements of
the modeled air and ground systems vary, the simula-
tion scenario definition also varies. For example, the
elements of scenarios may largely differ between the
simulations for air crew training and research into pilot
vehicle interfaces. Therefore, we are conducting two
parallel efforts for developing the simulation scenario
definition language of aviation. First to mention, the
Aviation Scenario Definition Language (ASDL), pro-
posed by Jafer, Chhaya, Durak, and Gerlach (2016)
utilizes the Web Ontology Language (OWL) and
Eclipse Modeling Framework. The second one pro-
posed by Durak et al. (2017) utilizes System Entity
Structure ontology. Durak et al. (2018) claims that uti-
lizing XML based approaches are key to achieve wide
industry acceptance of the standard simulation sce-
nario definition language. Here in this paper we illus-
trate how equivalent schema for a scenario definition
language can be constructed using both OWL ontol-
ogy and SES based approaches.

2 Background

2.1 Domain-Specific Languages
Domain-specific languages (DSLs) are computer lan-
guages tailored to a specific application domain. As a
result, DSLs are often more expressive for that partic-
ular domain, offering ease of use. This allows domain
experts, who may not be familiar with programming
and general-purpose programming languages, to use a
DSL to express ideas and concepts in their domain,
which is commonly not possible otherwise.

DSL development is incredibly difficult as it re-
quires knowledge of the domain and language devel-
opment expertise, of which few people have both. As

a result, the creation of a DSL is often not considered
and if so, a DSL rarely evolves into a full-fledged lan-
guage which can be used within the domain it is in-
tended for (Mernik, Heering, & Sloane, 2005).

2.2 Ontology
An ontology describes the concepts and relationships
that are important in a particular domain and provides
a vocabulary for that domain via a computerized speci-
fication of the meaning of terms used in the vocabulary
(Yao & Zhang, 2009). Ontologies bridge the gap be-
tween people and systems, as ontologies describe do-
main relationships and objects in an easily understood
manner while maintaining the ability to be machine in-
terpretable. As a result, ontologies allow both people
and computers to understand and derive new knowl-
edge about the domain in question (Putten, Wolfe, &
Dignum, 2008). Therefore, ontologies can be used as a
starting point for further development as a domain ex-
pands or the ontology embraces new or additional con-
cepts.

The Web Ontology Language (OWL) is a popular
format for creating and sharing an ontology. OWL is
a semantic markup language for publishing and shar-
ing ontologies on the web. It extends the Resource De-
scription Framework (RDF) vocabulary and enables
describing a domain in terms of classes, properties,
and individuals (Bechhofer, 2009).

2.3 Aviation Scenario Definition Language
First proposed by Jafer, Chhaya, Durak, and Gerlach
(2016), the Aviation Scenario Definition Language
(ASDL) provides a simple, standardized method for
aviation scenario generation from a model-driven per-
spective. ASDL aims to provide a common mecha-
nism for verifying and executing aviation scenarios,
allow for effective sharing of scenarios among various
simulation environments, improve the consistency of
different simulators and simulations, and enable the
reuse of scenario specifications. By creating a com-
mon, standardized language for defining aviation sce-
narios, the duplicate effort often seen in the aviation
simulation scenario generation process can be avoided.
Developed in the Eclipse Modeling Framework
(EMF), ASDL is a DSL currently supports four major
categories of flight operation scenarios: departure, en
route, reroute, and landing, as well as air traffic man-
agement concepts such as controller-pilot communica-
tion (Chhaya, Jafer, Coyne, Thigpen, & Durak, 2018).

The creation of ASDL and ASDL scenarios fol-
lows three major steps: (1) ASDL-specific ontology
creation, (2) EMF definition and metamodel creation,
and (3) design and implementation of a scenario in the
instantiated model. The ASDL ontology is comprised
primarily of key terminology defined by the Federal
Aviation Administration (FAA), as well as procedures
and operations that are communicated between the pi-
lot and air traffic control (ATC). All ontology terms
currently included in ASDL were obtained from (Fed-
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Figure 2. Overview of SES items and relationships.

eral Aviation Administration, 1995), (SESAR, 2018),
and (Federal Aviation Administration, 2012). In the in-
terest of reusability, the ASDL ontology focuses on all
aspects of a flight, including the physical aircraft, ATC
communications and procedures, and pilot communi-
cations and procedures. By including such aspects, the
ontology can be used in all forms of aviation simula-
tors, including ATC simulators and pilot training sim-
ulators.

2.4 SES
A fundamental representation of Discrete Event Sys-
tem Specification (DEVS) (Zeigler, 2000) hierarchical
modular model structures is the System Entity Struc-
ture (SES) (Zeigler, 1984) which represents a design
space via the elements of a system and their relation-
ships in a hierarchical and axiomatic manner. SES is
a declarative knowledge representation scheme that
characterizes the structure of a family of models in
terms of decompositions, component taxonomies, and
coupling specifications and constraints. The SES is a
formal ontology framework, axiomatically defined, to
represent the elements of a system (or world) and their
relationships in hierarchical manner making a fami-
ly of hierarchical DEVS models (Pawletta, Schmidt,
Zeigler, & Durak, 2016). Figure 2 provides a quick
overview of the elements and relationship involved in
a SES.

Entities represent things that have existence in a
certain domain. They can have variables which are as-
signed a value within a given range and type. An As-
pect expresses a way of decomposing an object into
more detailed parts and is a labeled decomposition
relation between the parent and the children. Multi-
Aspects are aspects for which the components are all
of the same kind. A Specialization represents a catego-
ry or family of specific forms that a thing can assume.
It is a labeled relation that expresses alternative choic-

es that a system entity can take on.
SES enables selection of:

1. System of system configurations (SES “as-
pects”);

2. Component system alternative functional and ab-
straction level choices (SES “specializations”);

3. Numbers and configurations (recursively) of in-
stances in multiple replications (SES “multi-
aspects”).

3 ASDL Ontology
All ontology terms currently included in ASDL were
obtained from documents available through the FAA
and European aviation programs (Federal Aviation
Administration, 1995). The ASDL ontology focuses
on all aspects of a flight, including the physical air-
craft, ATC communications and procedures, and pilot
communications and procedures. By including such
aspects, the ASDL ontology can be used in all forms
of aviation simulators, including ATC simulators and
pilot training simulators.

The ontology consists of two parts: keywords that
describe the physical model and operation of flights,
and words that describe key communication between
the control tower and pilots. Over 100 keywords can
be found on the basic ontology created using Protégé
(Alatrish, 2013), which saves them in OWL format.
The Web Ontology Language (Bechhofer, 2009) is a
language for defining ontologies on the Web. An OWL
ontology describes a domain in terms of classes, prop-
erties and individuals and may include rich descrip-
tions of the characteristics of those objects (Protégé
Home Page, 2018).

An ontology focuses mainly on classes which de-
scribe the concepts of the domain. It follows a hi-
erarchical model where subclasses are all necessarily
a part of the superclass (Noy & McGuinness, 2001).
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Table 1. Definition of terms in base class of ASDL Ontology.

Term Definition

Air Traffic
Control

A service operated by appropriate authority to promote the safe, orderly and expeditious flow of
air traffic.

Aircraft
Any machine that can derive support in the atmosphere from the reactions of the air other than
the reactions of the air against the earth’s surface.

Airport
An area on land or water that is used or intended to be used for the landing and takeoff of aircraft
and includes its buildings and facilities, if any.

Weather The state of the atmosphere at a place and time as regards heat, dryness, sunshine, wind, rain, etc.

The ASDL ontology has four base classes: Air_Traf-
fic_Control, Aircraft, Airport, and Weather. This can
be seen in Figure 3 below. All these terms have been
defined in Table 1.

Figure 3. High-level view of ASDL Ontology.

The main part of this ontology involves the aircraft
and its properties. Figure 4 shows the subclasses of
the Aircraft class. The Flight_Properties subclass de-
scribes the rules (IFR or VFR) that govern the flight,
the speed of the aircraft, the fuel remaining and has
three other subclasses: controls (pitch, roll and turn
rates), location (altitude, latitude, longitude) and time
(arrival time, departure time and Actual Calculated
Landing Time). The physical properties subclass con-
tains the call sign, type of aircraft and its weight class.

Figure 4. Elements present in Aircraft Class in Ontol-
ogy.

This ontology has been extended over time, with the
departure extension being added first, followed by the
en route and reroute extensions, respectively. This re-
sulted in a language composition following an “inside-
out” approach, with the landing and departure phases
being completed first, followed by the “middle” en
route and reroute extensions. This approach made it
easier to determine missing components from both the
landing and departure stages, as inserting the middle
extension was not possible unless all components from
both the landing and departure stages were complete
and accounted for. In addition, this approach allowed
for “ignoring” the more complicated components of
flight, such as airspace classifications and identifica-
tion, until both the landing and departure phases were
implemented. This greatly simplified the already com-
plicated additions needed for completing the en route
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and reroute extensions, which needed to modify the
original ASDL structure.

The addition of three extensions resulted in only
doubling the ontology, not tripling. This is because
many terms already defined in the original ASDL on-
tology could be reused in the other phases of flight.
This is common in aviation, where terms that are de-
fined can span multiple phases of flights or domains.
Therefore, it is believed that as further extensions are
added to ASDL, the number of additional ontology
terms needed to complete each extension may gradu-
ally decrease. This, in turn, suggests that future AS-
DL extensions can be added faster than previous ex-
tensions, given the future additions remain in a similar
domain and/or subject area as the previous ones.

3.1 Departure Extension Ontology
The departure extension was similar to the original
ASDL implementation in that both phases of flight in-
volved an aircraft, pilot, and air traffic controller and
their interactions in an airport environment. As a re-
sult, only a few additional ontology terms were need-
ed to create a departure scenario. However, some ad-
ditional terms were added for robustness in both the
landing and departure scenarios, such as the weight
properties of the aircraft.

Figure 5 shows the departure ontology terms added
to the Air Traffic Control class of ASDL ontology.
Note that some terms, such as Abort, are from the orig-
inal ASDL ontology and do not reflect additions made
for the departure extension; terms that were added in
this extension are highlighted in red. These terms are
used by air traffic control when communicating with
a departing aircraft and provide additional control op-
tions. For example, the Line Up and Wait term is not
required for every departure but can be used by ATC at
airports with heavy traffic in order to expedite the de-
parture process.

Figure 5. ATC Ontology terms with Departure up-
dates.

Figure 6 shows the departure terms added to Aircraft
class of the original ASDL ontology. These terms de-
fine characteristics of the aircraft relevant to the de-
parture phase, such as the aircraft’s maximum takeoff
weight and the proposed departure time. In addition,
the Pilot subclass was updated to contain an additional
option a pilot may request during the departure phase.

Figure 6. Aircraft Departure Ontology terms.

3.2 En Route Extension Ontology
The en route extension introduced the concept of air-
space and how aircraft move through different parts of
an airspace. This required a variety of changes to the
original ASDL ontology, which previously did not ex-
tend beyond a tower controller and airport airspace. As
a result, a large amount of new terms was needed, es-
pecially in the ATC class. In addition, a new Airspace
class was added in order to capture the movement of
the aircraft through different parts of an airspace dur-
ing the en route phase.

Figure 7 shows the en route ontology terms added
to the Air Traffic Control class of ASDL ontology.
These terms are used by air traffic control when com-
municating with an aircraft in the en route phase and
provide additional control options. For example, the
Traffic Alert term is not required for every aircraft in
the en route phase but can be used by ATC if another
aircraft may break the separation minima required be-
tween aircraft.
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Figure 7. ATC En Route Ontology terms.

Figure 8 shows the Aircraft class updated with the en
route terms. These terms define aircraft-specific com-
ponents during the en route phase of flight, such as
Miles-in-Trail, which is used by ATC for enforcing
separation minima between two cruising aircraft.

Figure 8. Aircraft En Route Ontology terms.

Figure 9 shows the new Airspace class. This class sup-
ports the movement of an aircraft through an associat-
ed airspace by defining the airspace components, such
as routes and fixes. It should be noted that Route is not
included as a term and instead acts only as a means
of categorizing all sub-classifications of routes and the

terms related to routes.

Figure 9. Airspace Ontology terms.

4 SES for Ontological Representation
The ontological representation of ASDL elements us-
ing SES is discussed in this section. The methodology
of creating this schema representation was the same as
that used to create the OWL ontology, and the data has
been gathered from the same sources. The ontologi-
cal details have been shown in tree-structure for better
visualization. Figure 10 shows the high-level view of
this SES representation.

Figure 10. High-level SES tree-structure visualization
of ASDL Scenario.

A scenario encapsulates the Environment in which all
interaction takes place, the Entities that perform tasks
or interact with each other and the Events that are trig-
gered. The three main Entities are Aircraft, Airport and
Airspace. The Aircraft entity can be seen in full in Fig-
ure 11.

The Airport Entity contains a Runway and is as-
sociated with flights and scenarios. Figure 12 shows a
full description of this SES element.
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Figure 11. SES tree-structure visualization of entities.

Figure 12. SES tree-structure visualization of entity
Airport.

The Airspace entity contains a number of sectors,
which contain several Air Traffic Centers (ATCs),
which have a facility name, a type of center (such as
Air Route Traffic Control Center for en route control,
tower and terminal radar approach control). This has
been shown in Figure 13.

Figure 13. SES tree-structure visualization of entity
Airport.

Schema-based Ontological Representations of a Domain-Specific Scenario Modeling Language

2:8 / 2:15



Figure 14. SES tree-structure visualization of events.

In addition to Entities, a Scenario also contains Events.
These describe the changes to the Environment or En-
tity and their effects on the other elements of the Sce-
nario. The changes in the state of an aircraft during
flight are recorded using State Machines. Figure 14
shows the SES representation of Events in ASDL.

The state machines are composed of states and
state transitions. We abstract the state transitions with
an event. An event (state transition) has a guard condi-
tion and an action. Figure 15 shows the SES tree-struc-
ture for the state machine.

Figure 15. SES tree-structure visualization of events.

Figure 16 shows the overall view of ASDL in SES.
All entities, events and properties can be observed here
which make up the definition of all attributes of the
language. The eXtensible Markup Language (XML)
schema was generated for this model to define ASDL
scenarios.

In the next section, we will present a sample en
route scenario and model it using both approaches to
scenario definition, that is, by using the EMF meta-
model of ASDL, and the SES definition of ASDL.

5 Sample En Route Scenario
The use of both forms of the ASDL Ontology can be
illustrated by defining a sample scenario using each
method. An en route scenario describes the aircraft’s
progression through airspace from the departure climb
to the arrival descent. The en route scenario is defined
as follows:

Aircraft ER-1357 has departed from the Day-
tona Beach International Airport (KDAB) via
runway 7L. ER-1357 will be landing on runway
29 at the Gainesville airport (KGNV). Stable
weather conditions nearing Daytona Beach are
reported as calm winds, dew point: 23, sky con-
dition: scattered clouds at 5500 feet, temperature:
15, visibility: 10. ER-1357 begins climbing and
heads direct to the Ormond VOR (OMN). Day-
tona departure ATC grants ER-1357 to climb to
8000 feet and tells ER-1357 to proceed along the
route as filed. ER-1357 begins to climb to 8000
feet. After passing OMN, ER-1357 joins airway
T207-208. At CARRA, Daytona departure hands
off ER-1357 to Jacksonville approach. ER-1357
turns west to join T208, heading towards KGNV.
Once within 30 miles of KGNV, Jacksonville ap-
proach control contacts ER-1357 and the landing
phase begins.
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Figure 16. Excerpt representation of XML Schema Model created using ASDL SES.

The state diagram for the en route extension is
shown in Figure 17. During the en route phase of
flight, the aircraft spends a majority of its time in the
Cruise state, where the aircraft’s location on the route
is constantly updating. At any time during the Cruise
state, an aircraft may turn, climb, or descend as neces-
sary to avoid traffic, follow the designated route, or as
commanded by ATC. After arriving within approach
range of the destination, the aircraft transitions into the
landing phase, thereby ending the en route phase.

Figure 17. En Route Scenario State Diagram.

5.1 EMF En Route Scenario Implementa-
tion
Figure 18 shows the EMF runtime implementation for
the en route example scenario. expands the State Ma-
chine to show the aircraft’s movement through each
state. It can be noted how this attribute closely follows
the states and transitions seen in the state diagram in
Figure 17.

An excerpt from the en route scenario XML file is
presented here. This portion of the scenario shows the
definition of all states in the State Machine.

Figure 18. Conceptual scenario attributes for En
Route Scenario.

<stateMachines>

<stateTransitions Name="Climb">
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Figure 20. Pruned SES definition for En Route Scenario XML Schema.

<guard Name="Aircraft reaches 8000 feet.">

<exitAction Name="Issue climb" Sequence="1" />

</guard>

</stateTransitions>

<stateTransitions Name="Cruise">

<guard Name="Aircraft passes OMN."/>

</stateTransitions>

<stateTransitions Name="Turn">

<guard Name="Aircraft joins airway T207-208."/>

</stateTransitions>

<stateTransitions Name="Cruise">

<guard Name="Aircraft passes CARRA.">

<exitAction Name="Daytona ATC issues handoff to

Jacksonville ATC." Sequence="1" />

</guard>

</stateTransitions>

<stateTransitions Name="Turn">

<guard Name="Aircraft joins airway T208."/>

</stateTransitions>

<stateTransitions Name="Cruise"/>

</stateMachines>

5.2 SES En Route Scenario Implementa-
tion
The SES implementation allows for the same infor-
mation to be entered which is present in the EMF
metamodel. However, it implements it using an XML
schema extracted from the tree structure of SES shown
in Figure 16.

With the given SES tree consisting of all possible
elements of the simulation scenario, the scenario mod-
eling activity requires pruning of this tree to hand pick
a very particular scenario. Pruning is defined as as-
signing the values to the variables and resolving the
choices in Aspect, Multi-Aspect and Specialization re-
lations. While there may be several Aspect nodes for
several decompositions of the system on the same hi-
erarchical level, a particular subset can be chosen in
pruning based on the purpose. The resulting selection-
free tree is the model representation of that particular

Figure 19. State Machine for the En Route Scenario.

scenario. The pruned version of the SES representation
has been shown for an en route scenario in Figure 20.

The elements shown for the EMF model in Figure
19 are implemented in this pruned SES ontology to ob-
tain the same type of graphical representation. The fig-
ure does not include all the elements to save space, but
shows the basic structure to be similar to that obtained
using EMF. Figure 21 shows this graphical represen-
tation of entities using the SES definition of ASDL.
The state machine for this scenario using SES is seen
in Figure 22 and is comparable to that obtained using
EMF in Figure 19.
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Figure 21. Scenario attributes for En Route Scenario
using SES Definition.

Figure 22. State Machine for En Route Scenario us-
ing SES Definition.

The XML depiction of the state machine using this
process is presented here.

<StateMachines>

<StateTransitions Name="Climb">

<Guard Name="Aircraft reaches 8000 feet.">

<ExitAction Name="Issue climb" Sequence="1" />

</Guard>

</StateTransitions>

<StateTransitions Name="Cruise">

<Guard Name="Aircraft passes OMN."/>

</StateTransitions>

<StateTransitions Name="Turn">

<Guard Name="Aircraft joins airway T207-208."/>

</StateTransitions>

<StateTransitions Name="Cruise">

<Guard Name="Aircraft passes CARRA.">

<ExitAction Name="Daytona ATC issues handoff to

Jacksonville ATC." Sequence="1" />

</Guard>

</StateTransitions>

<StateTransitions Name="Turn">

<Guard Name="Aircraft joins airway T208."/>

</StateTransitions>

<StateTransitions Name="Cruise"/>

</StateMachines>

As can be seen from the excerpts, an identical XML
scenario is produced using two different mechanisms
and representations of the ASDL ontology.

6 ASDL Standardization
A well-known problem in the aviation simulation
community is the complexity of simulators and variety
in simulator designs. This commonly results in indi-
vidual implementations of scenarios which work only
on a specific simulator system. Standardization of AS-
DL creates a more accessible means of defining avia-
tion scenarios which are reusable, easier to understand,
and reduce error through reduced complexity. By fol-
lowing the Simulation Interoperability Standards Or-
ganization (SISO) standardization guidelines and pro-
cedure, ASDL can become a full-fledged standard pro-
viding a general, stable, and supported means of defin-
ing scenarios for use in aviation in ways that are not
limited to a specific simulator design.

6.1 SISO Standardization Process
SISO is an international organization dedicated to the
promotion of interoperability and reuse in the M&S
community (Simulation Interoperability Standards Or-
ganization, 2017b). SISO publishes a variety of stan-
dards which strive to meet this goal in a variety of sim-
ulation domains, including analysis, research and de-
velopment, testing and evaluation, and training. These
standards provide a common base for creating reusable
simulation components. However, becoming a SISO
standard is not an easy task. SISO standards need to be
stable, well understood, technically competent, have
multiple independent interoperable implementations,
be well received by the community, and be recogniz-
ably useful to the M&S community (Simulation Inter-
operability Standards Organization, 2017a).

There is a six-step process to becoming a SISO
standard: (1) Activity Approval, (2) Product Develop-
ment, (3) Forming Balloting Group and Product Bal-
loting, (4) Product Approval, (5) Interpretation, Distri-
bution and Configuration Management, and (6) Peri-
odic Review. After being nominated to become a SISO
standard, the product must apply for formal SISO ap-
proval. The proposal may be based on work previously
done by an external organization. If the proposal is
approved, the product begins development, following
SISO standards, by a Product Development Group
(PDG), which is assigned to the project. The PDG then
presents the status of the product for approval to begin
balloting to become a full-fledged standard. If more
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work on the product is needed, it goes back to the
product development step. Otherwise, it moves into
product approval. If the product demonstrates adher-
ence to SISO principles for inclusion as a SISO stan-
dard, it is accepted by a committee. Once approved, a
Product Support Group (PSG) takes responsibility of
the product and handles the distribution and configura-
tion management for the product and provides support
to the community for the product. Finally, the PSG
will periodically review each product to ensure they
are still relevant to the community and they continue
to meet SISO requirements (Simulation Interoperabil-
ity Standards Organization, 2017c).

In 2008, the Military Scenario Definition Lan-
guage (MSDL) standard was accepted and published
as a SISO standard. Reaffirmed in 2015, this standard
defined an XML-based language for defining military
scenarios. The intent of MSDL was to create a general
and reusable method of creating and verifying military
scenarios, improve consistency among scenarios, and
create reuse of scenarios between different simulators
through a standard scenario language format (Simula-
tion Interoperability Standards Organization, 2008).

ASDL was created with MSDL as a source of in-
spiration, as both languages share a similar domain of
scenario generation and application. However, ASDL
addresses scenario generation for the aviation domain,
which is not addressed or supported through MSDL.
Similar to the MSDL, ASDL is defined using an XML
schema that allows for format standardization and con-
tent verification. This definition of ASDL should be
used towards applying for SISO standardization.

6.2 DSL Standardization Challenges
In addition to being incredibly difficult to create, DSLs
are also difficult to standardize. An examination of
the Battle Management Language (BML) standardiza-
tion efforts identified three major problems that can
delay or inhibit the standardization of a domain lan-
guage: (1) the technical readiness, (2) the need for a
deliberate process, and (3) the adequacy of resources
to pursue standard development. After over five years
of standardization efforts, BML was still unable to be
accepted as a SISO standard. One of the major fac-
tors in this result was the lack of technical readiness.
Technical readiness includes the need for multi-disci-
plined support and multiple perspectives, technology
advancement, and emergent requirements. BML is a
wide-spread, large-scope language that requires a vast
amount of technical expertise across a variety of do-
mains, including all branches of the military. In addi-
tion, as technology continued to mature, BML require-
ments and the systems used by BML changed. For ex-
ample, while attempting to standardize BML, the un-
derlying data model was continually updated and re-
vised, leading to inconsistencies and issues with the
standardization. These problems significantly delayed
the standardization process for BML. In addition to
technical readiness issues, BML was required by the

SISO standardization process to follow a deliberate
process which proved the need for and competency of
the language. However, this was incredibly difficult to
achieve for a project of this size and style. BML was
being developed piecemeal, by contributors and volun-
teers from all over the world. This distributed develop-
ment style led to copious misunderstandings and trust
issues amongst the team. The team became fractured
and meaningful development slowed to a crawl. The
team also lacked resources to achieve the goal of stan-
dardization. While volunteers keep the costs of devel-
opment lower, it can lead to issues in motivation and
drive. As a result, the development schedule can suffer
from a lack of direction and motivation from a single
driving point, such as a sponsor. In addition, because
SISO standards strive for openness and accessibility,
tension was created between leaders trying to drive a
project forward and those implementing the project.
A strong understanding of the technical domain and
a homogeneous team culture are necessary to avoid
these fatal standardization problems (Abbot, Pullen, &
Levine, 2011).

7 Discussion and Future Work
This paper examined the ontological development of
ASDL using two different methods. For the first, the
ontology was created in the OWL format using an
open-source ontology editor called Protégé. This on-
tology was then used to create an EMF metamodel of
the language and an XML schema was produced us-
ing automated model transformations and code gener-
ation. In the other approach, the ontology was defined
in the form of SES entities and relationships. This tree
structure of SES was used to obtain the XML schema.
The XML script of a sample en route scenario was ob-
tained using both methods and found to be identical.
However, as the results are indistinguishable, both ap-
proaches are valid and suited to the purpose of creating
a scenario definition language in aviation. A compari-
son of the two approaches has been presented in Table
2.

It was found that entities and relationships are re-
quired at the start to define a scenario using both ap-
proaches. The specification format for OWL is hier-
archical, whereas SES follows more rigid guidelines
and restrictions in the definition of entities, aspects
and specializations. The EMF ontology is in a standard
web ontology language format (.owl file), whereas the
SES is in a graphical format. An OWL file requires an
additional tool to open and edit the file, while work-
ing with SES can be done using any graphical editor.
However, due to the specialized structure, an under-
standing of SES is required to comprehend and edit
these files. The authors found that the SES approach
did not require the additional step of transforming the
ontological details into an EMF model, but rather re-
quired its definition using an XML tool. It also re-
moved the dependency on the Eclipse framework dur-
ing the development stage. Ultimately, both approach-
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Table 2. Comparison of characteristics using the two approaches.

Characteristics OWL/EMF SES/XML

Required attributes Entities and relationships Entities, relationships and quantities

Specification structure Hierarchical Tree structure

Ontology format .owl file Graphical

Scenario output format XML XML

Framework independence No; dependent on EMF Yes

es produced an identical scenario in XML format.
As ASDL is still in its infancy, the next step is to

expand the language to describe scenarios in better de-
tail than is currently possible. The language needs to
be extended to cover a wider variety of scenarios such
as flight training, air traffic controller training, and un-
manned vehicle flight. This work done for ASDL is a
stepping stone to the standardization of the language as
a method for defining aviation scenarios. The process
for standardizing such a language has been described
here along with some of the challenges facing this ef-
fort.
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