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Abstract
The first step in designing a domain-specific simulation scenario definition language is constructing its ontology. The
recently published Aviation Scenario Definition Language (ASDL) aims at providing a common platform to specify
scenarios in the aviation domain. To capture an ASDL ontology, the Web Ontology Language and the Protégé tool
was utilized, which was then converted into an XML schema by means of tool automation in the Eclipse Modeling
Framework. On the other hand, the System Entity Structure (SES) provides a formal basis to represent the ontological
foundations of a domain language. Following the XML Schema representation of SES, a scenario modeling ontology
that has been recently published, we illustrate how an equivalent schema for a scenario definition language can be
constructed using a domain-specific language ontology-driven approach and SES. We take both approaches to rep-
resent the ASDL ontology and prove that the resulting schema produced from these two approaches converge to the
same result.

1 Introduction
The term “scenario” has a variety of published defini-
tions from a vast array of domains. While the term itself
has varying meanings, two definitions represent a sce-
nario in the context of simulation development and us-
age. First, a scenario can be defined as a description of
the hypothetical or real area, environment, means, objec-
tives, and events during a specified time frame related
to events of interest (GSD Product Development Group,
2014). Second, a scenario can be defined as a specifica-
tion of conditions and situations to be represented by a
simulation environment for its purpose (Durak, Topcu,
Siegfried, & Oguztuzun, 2014). Both definitions agree
that a scenario is a description of important events and
conditions needed to represent a specific order of events
which, in this application, occurs within a simulation en-
vironment. Therefore, when developing a simulation en-

vironment which utilizes these events and conditions, it
is often a prerequisite to define the scenarios that will be
executed in the target simulation environment. This con-
cept is known as scenario-based development.

The Simulation Interoperability Standards Organiza-
tion (SISO) released guidelines for the creation of simu-
lation scenarios, detailed in (NATO Modelling and Sim-
ulation Group MSG-086, 2015). The guideline provides
detailed information regarding the development of sim-
ulation scenarios, including an overview of available
tools and processes. According to (GSD Product Devel-
opment Group, 2014), a scenario must be well-defined
and must be complete, consistent, and comprehensible.
Failing to achieve these aspects can lead to incomplete
scenario definition and misunderstanding regarding the
scope and applications of the simulation environment.
As a result, the subsequently designed simulation envi-
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ronment is prone to error and may not reflect what the
user originally intended. For a simulation environment
that is designed to execute a specific set of scenarios, this
misunderstanding can be disastrous.

Scenario development is an important part of all
phases of the simulation environment development
process. It not only defines a specification of a simula-
tion run, but also provides an input for the design and
evaluation of the simulation environment itself (Durak,
Topcu, Siegfried, & Oguztuzun, 2014). Scenario devel-
opment can be broken down into the creation of three
scenario groups: (1) operational scenarios, (2) conceptu-
al scenarios, and (3) executable scenarios. First, opera-
tional scenarios are provided by subject-matter experts
(SMEs) in the early stages of development. These sce-
narios often provide a broad description of the desired
events in textual form using natural language. For ex-
ample, an operational scenario may describe what events
occur during the simulation and in which order they
should occur. Operational scenarios use domain-specific
terminology to describe the events, which can then be
identified by the Modeling and Simulation (M&S) ex-
pert and incorporated into the simulation ontology. Oper-
ational scenarios must be identified before development
of the simulation environment, as virtually all simulation
requirements are derived from these scenarios. Second,
although operational scenarios provide the simulation re-
quirements, they are too broad to provide the details nec-
essary to derive a conceptual model and create a simula-
tion environment. A conceptual scenario adds this detail
and additional information to the operational scenarios.
These scenarios are often created by an M&S expert in
collaboration with an SME. Although similar to an oper-
ational scenario, conceptual scenarios should contain all
information needed for the simulation environment. In
addition, instead of a purely natural language approach, a
conceptual scenario is used to create a conceptual model,
which elaborates concepts into entities similar to UML
classes. These entities contain properties and attributes
which describe their roles and associations in the simu-
lation environment. Finally, once the conceptual model
is complete and the simulation environment is defined,
executable scenarios can be made. An executable sce-
nario is the specification of a specific situation providing
all information necessary for preparation, initialization,
and execution of a simulation environment (GSD Prod-
uct Development Group, 2014). These scenarios are ide-
ally specified in a way that allows them to be machine-
readable and reusable. These types of scenarios can be
seen in Figure 1.

Durak et al. (Durak, Topcu, Siegfried, & Oguztuzun,
2014) propose a model-driven engineering (MDE) ap-
proach to the scenario development process using the
Eclipse Modeling Framework (EMF). Following MDE
principles, scenario development is viewed as the trans-

Figure 1. Types of scenarios.

formation of operational scenarios (defined using natural
language) to conceptual scenarios (conforming to a
metamodel) to executable scenarios (specified using a
scenario specification language) and simulation environ-
ment design (following a specific formalism). As the de-
velopment process occurs, the scenario models are re-
fined and transformed. As a result, the proposed method
requires conceptual scenarios to be based on a metamod-
el which is then transformed into executable scenarios
for target simulation environments using a set of rules
specific to the target simulation environment. Following
this method of model-to-model or model-to-text trans-
formations, a conceptual scenario can be transformed in-
to multiple executable scenarios for multiple target sim-
ulation environments. This greatly promotes reuse and
simplicity among the M&S community.

During the scenario development process, each sce-
nario should at least specify three main components:
(1) the initial state, (2) the course of events, and (3)
the termination conditions. As the scenario development
process progresses, these three components should be
further refined and expanded. The initial state describes
the situation at the beginning of the scenario timeline and
generally contains information such as date and time,
surrounding conditions, and objects. The course of
events describes any pre-planned events that occur at a
specified time or in a specified order. These events can
elicit a response, such as from a trainee using the system,
or describe a change in entity association or state, such
as an aircraft beginning a turn while en route. Events are
often prompted by a trigger condition and each event in-
jects changes to the simulation scenario state to achieve a
desired effect or action. Any number of events can occur
throughout the scenario timeline. The termination con-
ditions describe the state of the simulation environment
where the scenario can be defined as completed or termi-
nated. This can occur via a specific event (such as a suc-
cessful landing) or other means of measurement (such as
achieving a predefined elapsed time) (GSD Product De-
velopment Group, 2014).

Scenario-based development and the scenario devel-
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opment process are complex and time-consuming. How-
ever, a variety of tools and standards exist to help allevi-
ate these challenges. For operational scenarios, the Dis-
tributed Simulation Engineering and Execution Process
(DSEEP) describes a generic 7-step process for devel-
oping and executing a simulation environment. DSEEP
was used by Durak et al. (Durak, Topcu, Siegfried, &
Oguztuzun, 2014) when implementing the MDE ap-
proach to scenario development. The Coalition-Battle
Management Language (C-BML) strives to provide a
standard for specifying the course of events within a sce-
nario. For conceptual scenarios, the Base Object Model
(BOM) defines a standard for defining and reusing com-
ponents of models, simulations, and federations. BOM
can be used as a base for a simulation conceptual model
and in the design of scenarios for interoperable simu-
lations. For executable scenarios, the Military Scenario
Definition Language (MSDL) is the most well-known
standard for specifying executable scenarios in the mili-
tary domain (GSD Product Development Group, 2014).

The American Institute of Aeronautics and Astro-
nautics (AIAA) Modeling and Simulation Technical
Committee (MSTC) recently launched a working group
towards the development of a standard simulation sce-
nario definition language for the aviation domain. How-
ever, there are multitudes of challenges which are well
introduced in (Jafer & Durak, 2017). First to mention
is the complexity of the aviation systems which comes
from the large number of systems/subsystems involved,
their deep hierarchical system structures, and compli-
cated interrelations and inter-dependencies. Simulation
scenario definition conclusively inherits this complexity.
Additionally, variability of intended use adds another
flavor to complexity. It corresponds to variability in sys-
tems modeling both in scope and resolution. As the
structure and elements of the modeled air and ground
systems vary, the simulation scenario definition also
varies. For example, the elements of scenarios may
largely differ between the simulations for air crew train-
ing and research into pilot vehicle interfaces. Therefore,
we are conducting two parallel efforts for developing the
simulation scenario definition language of aviation. First
to mention, the Aviation Scenario Definition Language
(ASDL), proposed by Jafer, Chhaya, Durak, and Gerlach
(2016) utilizes the Web Ontology Language (OWL) and
Eclipse Modeling Framework. The second one proposed
by Durak et al. (2017) utilizes System Entity Structure
ontology. Durak et al. (2018) claims that utilizing XML
based approaches are key to achieve wide industry ac-
ceptance of the standard simulation scenario definition
language. Here in this paper we illustrate how equivalent
schema for a scenario definition language can be con-
structed using both OWL ontology and SES based ap-
proaches.

2 Background

2.1 Domain-Specific Languages
Domain-specific languages (DSLs) are computer lan-
guages tailored to a specific application domain. As a re-
sult, DSLs are often more expressive for that particular
domain, offering ease of use. This allows domain ex-
perts, who may not be familiar with programming and
general-purpose programming languages, to use a DSL
to express ideas and concepts in their domain, which is
commonly not possible otherwise.

DSL development is incredibly difficult as it requires
knowledge of the domain and language development ex-
pertise, of which few people have both. As a result, the
creation of a DSL is often not considered and if so, a
DSL rarely evolves into a full-fledged language which
can be used within the domain it is intended for (Mernik,
Heering, & Sloane, 2005).

2.2 Ontology
An ontology describes the concepts and relationships
that are important in a particular domain and provides a
vocabulary for that domain via a computerized specifica-
tion of the meaning of terms used in the vocabulary (Yao
& Zhang, 2009). Ontologies bridge the gap between peo-
ple and systems, as ontologies describe domain relation-
ships and objects in an easily understood manner while
maintaining the ability to be machine interpretable. As
a result, ontologies allow both people and computers to
understand and derive new knowledge about the domain
in question (Putten, Wolfe, & Dignum, 2008). There-
fore, ontologies can be used as a starting point for further
development as a domain expands or the ontology em-
braces new or additional concepts.

The Web Ontology Language (OWL) is a popular
format for creating and sharing an ontology. OWL is a
semantic markup language for publishing and sharing
ontologies on the web. It extends the Resource Descrip-
tion Framework (RDF) vocabulary and enables describ-
ing a domain in terms of classes, properties, and individ-
uals (Bechhofer, 2009).

2.3 Aviation Scenario Definition Language
First proposed by Jafer, Chhaya, Durak, and Gerlach
(2016), the Aviation Scenario Definition Language (AS-
DL) provides a simple, standardized method for aviation
scenario generation from a model-driven perspective.
ASDL aims to provide a common mechanism for veri-
fying and executing aviation scenarios, allow for effec-
tive sharing of scenarios among various simulation en-
vironments, improve the consistency of different simu-
lators and simulations, and enable the reuse of scenario
specifications. By creating a common, standardized lan-
guage for defining aviation scenarios, the duplicate ef-
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Figure 2. Overview of SES items and relationships.

fort often seen in the aviation simulation scenario gener-
ation process can be avoided. Developed in the Eclipse
Modeling Framework (EMF), ASDL is a DSL currently
supports four major categories of flight operation scenar-
ios: departure, en route, reroute, and landing, as well as
air traffic management concepts such as controller-pilot
communication (Chhaya, Jafer, Coyne, Thigpen, & Du-
rak, 2018).

The creation of ASDL and ASDL scenarios follows
three major steps: (1) ASDL-specific ontology creation,
(2) EMF definition and metamodel creation, and (3) de-
sign and implementation of a scenario in the instantiated
model. The ASDL ontology is comprised primarily of
key terminology defined by the Federal Aviation Ad-
ministration (FAA), as well as procedures and operations
that are communicated between the pilot and air traffic
control (ATC). All ontology terms currently included in
ASDL were obtained from (Federal Aviation Adminis-
tration, 1995), (SESAR, 2018), and (Federal Aviation
Administration, 2012). In the interest of reusability, the
ASDL ontology focuses on all aspects of a flight, includ-
ing the physical aircraft, ATC communications and pro-
cedures, and pilot communications and procedures. By
including such aspects, the ontology can be used in all
forms of aviation simulators, including ATC simulators
and pilot training simulators.

2.4 SES
A fundamental representation of Discrete Event System
Specification (DEVS) (Zeigler, 2000) hierarchical mod-
ular model structures is the System Entity Structure
(SES) (Zeigler, 1984) which represents a design space
via the elements of a system and their relationships in

a hierarchical and axiomatic manner. SES is a declara-
tive knowledge representation scheme that characterizes
the structure of a family of models in terms of decom-
positions, component taxonomies, and coupling specifi-
cations and constraints. The SES is a formal ontology
framework, axiomatically defined, to represent the el-
ements of a system (or world) and their relationships
in hierarchical manner making a family of hierarchi-
cal DEVS models (Pawletta, Schmidt, Zeigler, & Durak,
2016). Figure 2 provides a quick overview of the ele-
ments and relationship involved in a SES.

Entities represent things that have existence in a cer-
tain domain. They can have variables which are assigned
a value within a given range and type. An Aspect ex-
presses a way of decomposing an object into more de-
tailed parts and is a labeled decomposition relation be-
tween the parent and the children. MultiAspects are as-
pects for which the components are all of the same kind.
A Specialization represents a category or family of spe-
cific forms that a thing can assume. It is a labeled rela-
tion that expresses alternative choices that a system enti-
ty can take on.

SES enables selection of:

1. System of system configurations (SES “aspects”);
2. Component system alternative functional and ab-

straction level choices (SES “specializations”);
3. Numbers and configurations (recursively) of in-

stances in multiple replications (SES “multi-
aspects”).

3 ASDL Ontology
All ontology terms currently included in ASDL were ob-
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Table 1. Definition of terms in base class of ASDL Ontology.

Term Definition

Air Traffic
Control

A service operated by appropriate authority to promote the safe, orderly and expeditious flow of air
traffic.

Aircraft
Any machine that can derive support in the atmosphere from the reactions of the air other than the
reactions of the air against the earth’s surface.

Airport
An area on land or water that is used or intended to be used for the landing and takeoff of aircraft and
includes its buildings and facilities, if any.

Weather The state of the atmosphere at a place and time as regards heat, dryness, sunshine, wind, rain, etc.

tained from documents available through the FAA and
European aviation programs (Federal Aviation Admin-
istration, 1995). The ASDL ontology focuses on all as-
pects of a flight, including the physical aircraft, ATC
communications and procedures, and pilot communica-
tions and procedures. By including such aspects, the AS-
DL ontology can be used in all forms of aviation simula-
tors, including ATC simulators and pilot training simula-
tors.

The ontology consists of two parts: keywords that
describe the physical model and operation of flights,
and words that describe key communication between
the control tower and pilots. Over 100 keywords can be
found on the basic ontology created using Protégé (Ala-
trish, 2013), which saves them in OWL format. The Web
Ontology Language (Bechhofer, 2009) is a language for
defining ontologies on the Web. An OWL ontology de-
scribes a domain in terms of classes, properties and indi-
viduals and may include rich descriptions of the charac-
teristics of those objects (Protégé Home Page, 2018).

An ontology focuses mainly on classes which de-
scribe the concepts of the domain. It follows a hierar-
chical model where subclasses are all necessarily a part
of the superclass (Noy & McGuinness, 2001). The AS-
DL ontology has four base classes: Air_Traffic_Control,
Aircraft, Airport, and Weather. This can be seen in Fig-
ure 3 below. All these terms have been defined in Table
1.

Figure 3. High-level view of ASDL Ontology.

The main part of this ontology involves the aircraft

and its properties. Figure 4 shows the subclasses of the
Aircraft class. The Flight_Properties subclass describes
the rules (IFR or VFR) that govern the flight, the speed
of the aircraft, the fuel remaining and has three other
subclasses: controls (pitch, roll and turn rates), location
(altitude, latitude, longitude) and time (arrival time, de-
parture time and Actual Calculated Landing Time). The
physical properties subclass contains the call sign, type
of aircraft and its weight class.

Figure 4. Elements present in Aircraft Class in Ontol-
ogy.

This ontology has been extended over time, with the de-
parture extension being added first, followed by the en
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route and reroute extensions, respectively. This result-
ed in a language composition following an “inside-out”
approach, with the landing and departure phases being
completed first, followed by the “middle” en route and
reroute extensions. This approach made it easier to de-
termine missing components from both the landing and
departure stages, as inserting the middle extension was
not possible unless all components from both the land-
ing and departure stages were complete and accounted
for. In addition, this approach allowed for “ignoring” the
more complicated components of flight, such as airspace
classifications and identification, until both the landing
and departure phases were implemented. This greatly
simplified the already complicated additions needed for
completing the en route and reroute extensions, which
needed to modify the original ASDL structure.

The addition of three extensions resulted in only dou-
bling the ontology, not tripling. This is because many
terms already defined in the original ASDL ontology
could be reused in the other phases of flight. This is com-
mon in aviation, where terms that are defined can span
multiple phases of flights or domains. Therefore, it is
believed that as further extensions are added to ASDL,
the number of additional ontology terms needed to com-
plete each extension may gradually decrease. This, in
turn, suggests that future ASDL extensions can be added
faster than previous extensions, given the future addi-
tions remain in a similar domain and/or subject area as
the previous ones.

3.1 Departure Extension Ontology
The departure extension was similar to the original AS-
DL implementation in that both phases of flight involved
an aircraft, pilot, and air traffic controller and their inter-
actions in an airport environment. As a result, only a few
additional ontology terms were needed to create a de-
parture scenario. However, some additional terms were
added for robustness in both the landing and departure
scenarios, such as the weight properties of the aircraft.

Figure 5 shows the departure ontology terms added
to the Air Traffic Control class of ASDL ontology. Note
that some terms, such as Abort, are from the original AS-
DL ontology and do not reflect additions made for the
departure extension; terms that were added in this exten-
sion are highlighted in red. These terms are used by air
traffic control when communicating with a departing air-
craft and provide additional control options. For exam-
ple, the Line Up and Wait term is not required for every
departure but can be used by ATC at airports with heavy
traffic in order to expedite the departure process.

Figure 5. ATC Ontology terms with Departure updates.

Figure 6 shows the departure terms added to Aircraft
class of the original ASDL ontology. These terms define
characteristics of the aircraft relevant to the departure
phase, such as the aircraft’s maximum takeoff weight
and the proposed departure time. In addition, the Pilot
subclass was updated to contain an additional option a
pilot may request during the departure phase.

Figure 6. Aircraft Departure Ontology terms.

3.2 En Route Extension Ontology
The en route extension introduced the concept of air-
space and how aircraft move through different parts of
an airspace. This required a variety of changes to the
original ASDL ontology, which previously did not ex-
tend beyond a tower controller and airport airspace. As
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a result, a large amount of new terms was needed, espe-
cially in the ATC class. In addition, a new Airspace class
was added in order to capture the movement of the air-
craft through different parts of an airspace during the en
route phase.

Figure 7 shows the en route ontology terms added to
the Air Traffic Control class of ASDL ontology. These
terms are used by air traffic control when communicat-
ing with an aircraft in the en route phase and provide ad-
ditional control options. For example, the Traffic Alert
term is not required for every aircraft in the en route
phase but can be used by ATC if another aircraft may
break the separation minima required between aircraft.

Figure 7. ATC En Route Ontology terms.

Figure 8 shows the Aircraft class updated with the en
route terms. These terms define aircraft-specific compo-
nents during the en route phase of flight, such as Miles-
in-Trail, which is used by ATC for enforcing separation
minima between two cruising aircraft.

Figure 8. Aircraft En Route Ontology terms.

Figure 9 shows the new Airspace class. This class sup-
ports the movement of an aircraft through an associated
airspace by defining the airspace components, such as
routes and fixes. It should be noted that Route is not in-
cluded as a term and instead acts only as a means of cat-
egorizing all sub-classifications of routes and the terms
related to routes.

Figure 9. Airspace Ontology terms.

4 SES for Ontological Representation
The ontological representation of ASDL elements using
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Figure 11. SES tree-structure visualization of entities.

SES is discussed in this section. The methodology of
creating this schema representation was the same as that
used to create the OWL ontology, and the data has been
gathered from the same sources. The ontological details
have been shown in tree-structure for better visualiza-
tion. Figure 10 shows the high-level view of this SES
representation.

Figure 10. High-level SES tree-structure visualization
of ASDL Scenario.

A scenario encapsulates the Environment in which all in-
teraction takes place, the Entities that perform tasks or
interact with each other and the Events that are triggered.
The three main Entities are Aircraft, Airport and Air-
space. The Aircraft entity can be seen in full in Figure
11.

The Airport Entity contains a Runway and is associ-
ated with flights and scenarios. Figure 12 shows a full
description of this SES element.
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Figure 12. SES tree-structure visualization of entity
Airport.

The Airspace entity contains a number of sectors, which
contain several Air Traffic Centers (ATCs), which have a
facility name, a type of center (such as Air Route Traffic
Control Center for en route control, tower and terminal
radar approach control). This has been shown in Figure
13.

Figure 13. SES tree-structure visualization of entity
Airport.

In addition to Entities, a Scenario also contains Events.
These describe the changes to the Environment or Entity
and their effects on the other elements of the Scenario.
The changes in the state of an aircraft during flight are
recorded using State Machines. Figure 14 shows the SES
representation of Events in ASDL.

The state machines are composed of states and state
transitions. We abstract the state transitions with an
event. An event (state transition) has a guard condition
and an action. Figure 15 shows the SES tree-structure for
the state machine.

Figure 15. SES tree-structure visualization of events.

Figure 16 shows the overall view of ASDL in SES.
All entities, events and properties can be observed here
which make up the definition of all attributes of the
language. The eXtensible Markup Language (XML)
schema was generated for this model to define ASDL
scenarios.

In the next section, we will present a sample en route
scenario and model it using both approaches to scenario
definition, that is, by using the EMF metamodel of AS-
DL, and the SES definition of ASDL.

5 Sample En Route Scenario
The use of both forms of the ASDL Ontology can be
illustrated by defining a sample scenario using each
method. An en route scenario describes the aircraft’s
progression through airspace from the departure climb to
the arrival descent. The en route scenario is defined as
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Figure 14. SES tree-structure visualization of events.

Figure 16. Excerpt representation of XML Schema Model created using ASDL SES.

follows:
Aircraft ER-1357 has departed from the Day-

tona Beach International Airport (KDAB) via run-
way 7L. ER-1357 will be landing on runway 29
at the Gainesville airport (KGNV). Stable weather
conditions nearing Daytona Beach are reported as
calm winds, dew point: 23, sky condition: scattered
clouds at 5500 feet, temperature: 15, visibility: 10.
ER-1357 begins climbing and heads direct to the
Ormond VOR (OMN). Daytona departure ATC
grants ER-1357 to climb to 8000 feet and tells
ER-1357 to proceed along the route as filed.
ER-1357 begins to climb to 8000 feet. After passing

OMN, ER-1357 joins airway T207-208. At CAR-
RA, Daytona departure hands off ER-1357 to Jack-
sonville approach. ER-1357 turns west to join
T208, heading towards KGNV. Once within 30
miles of KGNV, Jacksonville approach control con-
tacts ER-1357 and the landing phase begins.

The state diagram for the en route extension is shown
in Figure 17. During the en route phase of flight, the air-
craft spends a majority of its time in the Cruise state,
where the aircraft’s location on the route is constantly
updating. At any time during the Cruise state, an aircraft
may turn, climb, or descend as necessary to avoid traffic,
follow the designated route, or as commanded by ATC.
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After arriving within approach range of the destination,
the aircraft transitions into the landing phase, thereby
ending the en route phase.

Figure 17. En Route Scenario State Diagram.

5.1 EMF En Route Scenario Implementa-
tion
Figure 18 shows the EMF runtime implementation for
the en route example scenario. expands the State Ma-
chine to show the aircraft’s movement through each
state. It can be noted how this attribute closely follows
the states and transitions seen in the state diagram in Fig-
ure 17.

An excerpt from the en route scenario XML file is
presented here. This portion of the scenario shows the
definition of all states in the State Machine.

<stateMachines>

<stateTransitions Name="Climb">

<guard Name="Aircraft reaches 8000 feet.">

<exitAction Name="Issue climb" Sequence="1" />

</guard>

</stateTransitions>

<stateTransitions Name="Cruise">

<guard Name="Aircraft passes OMN."/>

</stateTransitions>

<stateTransitions Name="Turn">

<guard Name="Aircraft joins airway T207-208."/>

</stateTransitions>

<stateTransitions Name="Cruise">

<guard Name="Aircraft passes CARRA.">

<exitAction Name="Daytona ATC issues handoff to

Jacksonville ATC." Sequence="1" />

</guard>

</stateTransitions>

<stateTransitions Name="Turn">

<guard Name="Aircraft joins airway T208."/>

</stateTransitions>

<stateTransitions Name="Cruise"/>

</stateMachines>

5.2 SES En Route Scenario Implementation
The SES implementation allows for the same informa-

Figure 18. Conceptual scenario attributes for En Route
Scenario.

Figure 19. State Machine for the En Route Scenario.

tion to be entered which is present in the EMF metamod-
el. However, it implements it using an XML schema ex-
tracted from the tree structure of SES shown in Figure
16.
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Figure 20. Pruned SES definition for En Route Scenario XML Schema.

With the given SES tree consisting of all possible el-
ements of the simulation scenario, the scenario modeling
activity requires pruning of this tree to hand pick a very
particular scenario. Pruning is defined as assigning the
values to the variables and resolving the choices in As-
pect, Multi-Aspect and Specialization relations. While
there may be several Aspect nodes for several decom-
positions of the system on the same hierarchical level,
a particular subset can be chosen in pruning based on
the purpose. The resulting selection-free tree is the mod-
el representation of that particular scenario. The pruned
version of the SES representation has been shown for an
en route scenario in Figure 20.

The elements shown for the EMF model in Figure
19 are implemented in this pruned SES ontology to ob-
tain the same type of graphical representation. The figure
does not include all the elements to save space, but
shows the basic structure to be similar to that obtained
using EMF. Figure 21 shows this graphical representa-
tion of entities using the SES definition of ASDL. The
state machine for this scenario using SES is seen in Fig-
ure 22 and is comparable to that obtained using EMF in
Figure 19.

Figure 21. Scenario attributes for En Route Scenario
using SES Definition.
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Figure 22. State Machine for En Route Scenario using
SES Definition.

The XML depiction of the state machine using this
process is presented here.

<StateMachines>

<StateTransitions Name="Climb">

<Guard Name="Aircraft reaches 8000 feet.">

<ExitAction Name="Issue climb" Sequence="1" />

</Guard>

</StateTransitions>

<StateTransitions Name="Cruise">

<Guard Name="Aircraft passes OMN."/>

</StateTransitions>

<StateTransitions Name="Turn">

<Guard Name="Aircraft joins airway T207-208."/>

</StateTransitions>

<StateTransitions Name="Cruise">

<Guard Name="Aircraft passes CARRA.">

<ExitAction Name="Daytona ATC issues handoff to

Jacksonville ATC." Sequence="1" />

</Guard>

</StateTransitions>

<StateTransitions Name="Turn">

<Guard Name="Aircraft joins airway T208."/>

</StateTransitions>

<StateTransitions Name="Cruise"/>

</StateMachines>

As can be seen from the excerpts, an identical XML sce-
nario is produced using two different mechanisms and
representations of the ASDL ontology.

6 ASDL Standardization
A well-known problem in the aviation simulation com-
munity is the complexity of simulators and variety in
simulator designs. This commonly results in individual
implementations of scenarios which work only on a spe-
cific simulator system. Standardization of ASDL creates
a more accessible means of defining aviation scenarios
which are reusable, easier to understand, and reduce er-
ror through reduced complexity. By following the Sim-
ulation Interoperability Standards Organization (SISO)

standardization guidelines and procedure, ASDL can be-
come a full-fledged standard providing a general, stable,
and supported means of defining scenarios for use in avi-
ation in ways that are not limited to a specific simulator
design.

6.1 SISO Standardization Process
SISO is an international organization dedicated to the
promotion of interoperability and reuse in the M&S
community (Simulation Interoperability Standards Orga-
nization, 2017b). SISO publishes a variety of standards
which strive to meet this goal in a variety of simula-
tion domains, including analysis, research and develop-
ment, testing and evaluation, and training. These stan-
dards provide a common base for creating reusable simu-
lation components. However, becoming a SISO standard
is not an easy task. SISO standards need to be stable,
well understood, technically competent, have multiple
independent interoperable implementations, be well re-
ceived by the community, and be recognizably useful to
the M&S community (Simulation Interoperability Stan-
dards Organization, 2017a).

There is a six-step process to becoming a SISO stan-
dard: (1) Activity Approval, (2) Product Development,
(3) Forming Balloting Group and Product Balloting, (4)
Product Approval, (5) Interpretation, Distribution and
Configuration Management, and (6) Periodic Review.
After being nominated to become a SISO standard, the
product must apply for formal SISO approval. The pro-
posal may be based on work previously done by an ex-
ternal organization. If the proposal is approved, the prod-
uct begins development, following SISO standards, by a
Product Development Group (PDG), which is assigned
to the project. The PDG then presents the status of the
product for approval to begin balloting to become a full-
fledged standard. If more work on the product is needed,
it goes back to the product development step. Otherwise,
it moves into product approval. If the product demon-
strates adherence to SISO principles for inclusion as a
SISO standard, it is accepted by a committee. Once ap-
proved, a Product Support Group (PSG) takes respon-
sibility of the product and handles the distribution and
configuration management for the product and provides
support to the community for the product. Finally, the
PSG will periodically review each product to ensure they
are still relevant to the community and they continue
to meet SISO requirements (Simulation Interoperability
Standards Organization, 2017c).

In 2008, the Military Scenario Definition Language
(MSDL) standard was accepted and published as a SISO
standard. Reaffirmed in 2015, this standard defined an
XML-based language for defining military scenarios.
The intent of MSDL was to create a general and reusable
method of creating and verifying military scenarios, im-
prove consistency among scenarios, and create reuse of
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Table 2. Comparison of characteristics using the two approaches.

Characteristics OWL/EMF SES/XML

Required attributes Entities and relationships Entities, relationships and quantities

Specification structure Hierarchical Tree structure

Ontology format .owl file Graphical

Scenario output format XML XML

Framework independence No; dependent on EMF Yes

scenarios between different simulators through a stan-
dard scenario language format (Simulation Interoper-
ability Standards Organization, 2008).

ASDL was created with MSDL as a source of in-
spiration, as both languages share a similar domain of
scenario generation and application. However, ASDL
addresses scenario generation for the aviation domain,
which is not addressed or supported through MSDL.
Similar to the MSDL, ASDL is defined using an XML
schema that allows for format standardization and con-
tent verification. This definition of ASDL should be used
towards applying for SISO standardization.

6.2 DSL Standardization Challenges
In addition to being incredibly difficult to create, DSLs
are also difficult to standardize. An examination of the
Battle Management Language (BML) standardization
efforts identified three major problems that can delay or
inhibit the standardization of a domain language: (1) the
technical readiness, (2) the need for a deliberate process,
and (3) the adequacy of resources to pursue standard de-
velopment. After over five years of standardization ef-
forts, BML was still unable to be accepted as a SISO
standard. One of the major factors in this result was
the lack of technical readiness. Technical readiness in-
cludes the need for multi-disciplined support and mul-
tiple perspectives, technology advancement, and emer-
gent requirements. BML is a wide-spread, large-scope
language that requires a vast amount of technical exper-
tise across a variety of domains, including all branch-
es of the military. In addition, as technology continued
to mature, BML requirements and the systems used by
BML changed. For example, while attempting to stan-
dardize BML, the underlying data model was continually
updated and revised, leading to inconsistencies and is-
sues with the standardization. These problems signifi-
cantly delayed the standardization process for BML. In
addition to technical readiness issues, BML was required
by the SISO standardization process to follow a deliber-
ate process which proved the need for and competency
of the language. However, this was incredibly difficult

to achieve for a project of this size and style. BML was
being developed piecemeal, by contributors and volun-
teers from all over the world. This distributed develop-
ment style led to copious misunderstandings and trust is-
sues amongst the team. The team became fractured and
meaningful development slowed to a crawl. The team
also lacked resources to achieve the goal of standard-
ization. While volunteers keep the costs of development
lower, it can lead to issues in motivation and drive. As a
result, the development schedule can suffer from a lack
of direction and motivation from a single driving point,
such as a sponsor. In addition, because SISO standards
strive for openness and accessibility, tension was creat-
ed between leaders trying to drive a project forward and
those implementing the project. A strong understanding
of the technical domain and a homogeneous team culture
are necessary to avoid these fatal standardization prob-
lems (Abbot, Pullen, & Levine, 2011).

7 Discussion and Future Work
This paper examined the ontological development of
ASDL using two different methods. For the first, the on-
tology was created in the OWL format using an open-
source ontology editor called Protégé. This ontology was
then used to create an EMF metamodel of the language
and an XML schema was produced using automated
model transformations and code generation. In the other
approach, the ontology was defined in the form of SES
entities and relationships. This tree structure of SES was
used to obtain the XML schema. The XML script of a
sample en route scenario was obtained using both meth-
ods and found to be identical. However, as the results
are indistinguishable, both approaches are valid and suit-
ed to the purpose of creating a scenario definition lan-
guage in aviation. A comparison of the two approaches
has been presented in Table 2.

It was found that entities and relationships are re-
quired at the start to define a scenario using both ap-
proaches. The specification format for OWL is hierar-
chical, whereas SES follows more rigid guidelines and
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restrictions in the definition of entities, aspects and spe-
cializations. The EMF ontology is in a standard web on-
tology language format (.owl file), whereas the SES is
in a graphical format. An OWL file requires an addi-
tional tool to open and edit the file, while working with
SES can be done using any graphical editor. However,
due to the specialized structure, an understanding of SES
is required to comprehend and edit these files. The au-
thors found that the SES approach did not require the ad-
ditional step of transforming the ontological details in-
to an EMF model, but rather required its definition us-
ing an XML tool. It also removed the dependency on the
Eclipse framework during the development stage. Ulti-
mately, both approaches produced an identical scenario
in XML format.

As ASDL is still in its infancy, the next step is to ex-
pand the language to describe scenarios in better detail
than is currently possible. The language needs to be ex-
tended to cover a wider variety of scenarios such as
flight training, air traffic controller training, and un-
manned vehicle flight. This work done for ASDL is a
stepping stone to the standardization of the language as a
method for defining aviation scenarios. The process for
standardizing such a language has been described here
along with some of the challenges facing this effort.
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