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Abstract
Asynchronous iterative methods may improve the time-
to-solution of their synchronous counterparts on highly
parallel computational platforms. This paper considers
asynchronous iterative linear system solvers that employ
non-uniform randomization and develops a new imple-
mentation for such methods. Experiments with a two-di-
mensional finite-difference discrete Laplacian problem
are presented. The new finer grain implementation is
compared with an existing block-based one and shown
to be superior in terms of the convergence speed and ac-
curacy. In general, using non-uniform distributions in se-
lecting components to update may lead to faster conver-
gence. In particular, the new implementation converges
up to 10% faster when it uses a non-uniform distribution.

1 Introduction
Asynchronous iterative methods describe a class of par-
allel iterative algorithms where each computing element
is allowed to perform its task without waiting for updates
from any of the other processes. These methods are often
applied to the parallel solution of fixed-point problems
and have been used in a wide variety of applications
including: the fault-tolerant solution of linear systems
(Anzt, Dongarra, & Quintana-Ortı́, 2019), the precondi-
tioning of linear solvers (Chow & Patel, 2015), and opti-
mization (Recht et al., 2011), among many others. These
solvers tend not to converge to high precision as quickly
as their Krylov subspace counterparts; however, they can

converge very quickly to a low level of accuracy (Avron,
Druinsky, & Gupta, 2015). This loss of accuracy may
cause the use of asynchronous linear solvers to be subop-
timal for some applications, but the fact that they are able
to reach an approximate solution quickly opens up sever-
al other application areas. Possible use cases include pre-
conditioning to a Krylov method, solving systems that
may not need a high level of accuracy (e.g., big data and
machine learning), or smoothing a multigrid method.

Here we study asynchronous iterative methods for
solving linear systems of the form 𝐴𝑥 = 𝑏, such as asyn-
chronous Jacobi. One way to attempt to improve the per-
formance of asynchronous linear solvers is to have each
processor select randomly the (block of) components it
updates next, as opposed to fixing an update order a pri-
ori. This approach has been studied previously by Avron,
Druinsky, and Gupta (2015) for the case where the ran-
dom selection is done uniformly. Our work continues
to investigate the potential performance increase of dy-
namically weighting the random selection of the next
component to update. In the synchronous case, weight-
ing the selection using the norm of the row of 𝐴 associ-
ated with the selected component has been done previ-
ously (Strohmer & Vershynin, 2009; Leventhal & Lewis,
2010; Griebel & Oswald 2012). However, the idea em-
ployed here is to periodically sort and rank the residu-
als associated with each component and make the ran-
dom selection using a non-uniform distribution that is
more likely to select components with a larger contri-
bution to the residual. This is motivated by the suc-
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cess of weighted stationary solvers, such as the South-
well iteration, which typically converge in fewer itera-
tions than traditional Jacobi or Gauss-Seidel relaxation
schemes (see e.g., Southwell (1946) and Wolfson-Pou
and Chow (2017)).

In a previous work, we have already studied the use
of non-uniform distributions for selecting components to
update (Coleman, Jensen, & Sosonkina, 2019). The pre-
sent work extends that work by making the following
new contributions:

• Propose a new row-based randomized asynchro-
nous linear solver with a significantly different ap-
proach to the selection of components to update;

• Develop an alternative component ordering criteri-
on that uses component differences instead of resid-
uals;

• Observe experimentally that new row-based solver
exhibits convergence in fewer component relax-
ations than serial Gauss-Seidel;

• Compare the performance of the block- and row-
based solvers and demonstrates that the proposed
new row-based solver improves upon the block-
based one.

The structure of the rest of the paper is as follows. Sec-
tion 2 provides information on related studies. Section
3 gives an overview of asynchronous iterative methods.
Section 4 provides the design of randomized asynchro-
nous iterative solvers that use non-uniform distributions.
Section 5 presents the experimental results of the two
implementations considered in this work and their com-
parisons. Section 6 concludes and proposes some future
works.

2 Related Work
The Department of Energy has commissioned two very
detailed reports about the progression towards exascale
level computing; one from a general computing stand-
point conducted by Ashby et al. (2010), and a report
aimed specifically at applied mathematics for exascale
computing by Dongarra et al. (2014); both of which
emphasize the importance of developing scalable algo-
rithms moving forward towards exascale platforms. De-
velopment of scalable applications on a large scale starts
with modifying algorithms that form the basis for those
applications, and the stationary iterative methods ex-
amined here (e.g., Jacobi, Gauss-Seidel, block variants)
form an important aspect of many preconditioning tech-
niques for Krylov subspace methods, as well as com-
monly acting as smoother in multigrid methods.

Several recent studies focus on improving scalability
by attempting to remove the synchronization delay: a
fine-grained algorithm for computing incomplete LU
factors for the purposes of preconditioning of linear

solvers was created by Chow and Patel (2015), an op-
timization technique based upon an asynchronous ap-
proach to stochastic gradient descent was created by
Recht et al. (2011), and the efficacy of asynchronous
multigrid smoothers was explored for Computational
Fluid Dynamics (CFD) applications in (Kashi, Vangara,
& Nadarajah, 2018).

The use of randomization in linear algebra has found
use in a variety of areas including transforming linear
systems using Random Butterfly Transformations to
eliminate (with probability 1) the need for pivoting. This
has been used to aid in the performance of direct solvers
for dense matrices by Parker (1995), and later adopted
for sparse matrices by Baboulin, Li, and Rouet (2015).
Other examples include the random component selection
in stochastic gradient descent methods, including an ear-
ly study in Srivastava and Nedic (2011) that incorporates
asynchronous computation. More pertinent to the topic
studied here, randomized linear relaxation based solvers
have been studied in the past by Strikwerda (2002) who
extend the original asynchronous model presented by
Chazan and Miranker (1969) to allow component choice
and (theoretical) delay to be based upon probability dis-
tributions.

The present work follows a greedy approach, similar
in spirit to the Southwell iteration. Wolfson-Pou and
Chow (2017) extend a Southwell-oriented approach to
the case of parallel asynchronous solvers, whereby an
equation is relaxed if it has the largest residual among all
coupled equations.

3 Overview of Asynchronous Iterative
Methods
In asynchronous computation, each part of the problem
is updated such that no information from other parts is
needed while each individual computation is performed.
This allows each processor to act independently. The
model that is shown here to provide a basis for asyn-
chronous computation comes mainly from Frommer and
Szyld (2000). To start, consider a fixed point iteration
with the function, 𝐺: 𝐷 → 𝐷. Given a finite number of
processors 𝑃1, 𝑃2, …, 𝑃𝑝 each assigned to a block 𝐵
of components 𝐵1, 𝐵2, …, 𝐵𝑚, the computational model
can be stated as shown in Algorithm 1.

If each processor (𝑃𝑙) waits for the other processors
to finish each update, then the model describes a parallel
synchronous form of computation. If no order is estab-
lished for the processors, then the computation is asyn-
chronous.

At the end of an update by processor 𝑃𝑙, the compo-
nents associated with the block 𝐵𝑃𝑙 will be updated. This

results in a vector, ,

where 𝑠𝑙(𝑘) indicates how many times component 𝑙 has
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Algorithm 1 General Computational Model
1: for each processing element do
2: for until convergence do
3: Read from shared memory
4: Compute for all

5: Update in common memory with for

all
6: end for
7: end for

been updated, and 𝑘 is a global iteration counter that is
updated every time that any processing element makes
an update. A set of indices 𝐼𝑘 contains the components
that were updated on the 𝑘th iteration. Given these defi-
nitions, the three following conditions provide a frame-
work for asynchronous computation:

Definition 1. If the following three conditions hold

1. , i.e., only components that have
finished computing are used in the current approxi-
mation.

2. , i.e., the newest updates for
each component are used.

3. , i.e., all components will

continue to be updated.

Then given an initial , the iterative update
process defined by,

where each uses the latest updates available, is
called an asynchronous iteration.

This basic computational model provided by the
combination of Algorithm 1 and Definition 1 allows for
many different results on fine-grained iterative meth-
ods. In particular, our earlier work (Coleman, Jensen, &
Sosonkina, 2019) introduced a block-based randomized
asynchronous linear solver that uses non-uniform distri-
butions for dynamically prioritizing components to up-
date.

Relaxation methods have been the focus of many
studies related to asynchronous iterations starting with
Chazan and Miranker (1969). They are typically used to
solve linear systems of the form 𝐴𝑥 = 𝑏 and can be writ-
ten as fixed point iterations that can be expressed as

where 𝐶 is the 𝑛 × 𝑛 iteration matrix, 𝑥 is an 𝑛-dimen-
sional vector that represents the solution, and 𝑑 is anoth-
er 𝑛-dimensional vector that can be used to help define
the particular problem at hand. The Jacobi method is a
relaxation method that can be used in an asynchronous
manner and the update for a given component 𝑥𝑖 can be
expressed as

This iteration can give successive updates to the 𝑥𝑖 com-
ponent in the solution vector. In synchronous computing
environments, each update to an element of the solution
vector, 𝑥𝑖, is computed sequentially using the same data
for the other components of the solution vector (i.e., the
values for 𝑥𝑗 in Equation (2)). Conversely, in an asyn-
chronous computing environment, each update to an el-
ement of the solution vector occurs when the comput-
ing element responsible for updating that component is
ready to write the update to memory and the other com-
ponents used are simply the latest ones available to the
computing element. Expressing Equation (2) in a block
form similar to Equation (1) gives an iteration matrix of
𝐶 = –𝐷–1(𝐿 + 𝑈) where 𝐷 is the diagonal portion of 𝐴,
and 𝐿 and 𝑈 are the strictly lower and upper triangular
portions of 𝐴 respectively. Convergence of asynchronous
fixed point methods of the form presented in Equation
(1) is determined by the spectral radius of the iteration
matrix, 𝐶.

Theorem 1. For a fixed point iteration of the form
given in Equation (1) that adheres to the asynchronous
computational model provided by Algorithm 1 and Def-
inition 1, if the spectral radius of 𝐶, ρ(|𝐶|) , is less than
one, then the iterative method will converge to the fixed
point solution.

If 𝑥* is the fixed point of the iteration defined by
the matrix 𝐶, then convergence is given by ensuring that
the error at a given iteration, ‖ 𝑥(𝑚) – 𝑥* ‖, is sufficiently
small. In practice, this is accomplished by verifying that
the residual, 𝑟(𝑘) = 𝑏 – 𝐴𝑥(𝑘), is beneath a given thresh-
old. Asymptotic results such as this, i.e., that guarantee
eventual convergence but offer no guarantee as to the
rate of that convergence, exist for many variants of the it-
eration described above (see Frommer and Szyld (2000)
for a summary).

3.1 Randomized Linear Solvers
The use of randomization in asynchronous linear solvers
allows for the possibility of statements concerning the
rate of convergence to be made. A randomized Gauss-
Seidel method was introduced by Leventhal and Lewis
(2010) building off of the randomized Kaczmarz algo-
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rithm proposed by Strohmer and Vershynin (2009),
whereby the decrease in the expected value of the error
at each step is bounded. The analysis was generalized by
Griebel and Oswald (2012) who also added a new pa-
rameter that allows for both over and under relaxation.
Both of these studies weight the random selection of row
𝑖 by the size of the element 𝑎𝑖𝑖 ∈ 𝐴. In the case that 𝐴
has unit diagonal this simplifies to a uniform distribu-
tion. More recently, Avron, Druinsky, and Gupta (2015)
build upon the analysis by Leventhal and Lewis (2010)
and Griebel and Oswald (2012) and explicitly analyze
the case of asynchronous computation with a uniform
distribution.

All of the methods select the vector component to
update from a random distribution instead of either se-
quentially looping through the available components or
by tying the updates for a single component to a partic-
ular processor (see Equation (2)). In a traditional paral-
lelization of either a synchronous or asynchronous lin-
ear solver, processor 𝑗 is responsible for updating com-
ponent 𝑗; the asynchronous variant allows processor 𝑗 to
continue to compute relaxations for the component as-
signed to it regardless of the state of the other processors.
The use of randomization in the selection of which com-
ponent to update allows for the possibility of any proces-
sor updating any component. In a randomized asynchro-
nous linear solver, when a processor finishes computing
an update to a component, it writes the update to the
shared memory and then randomly draws the next com-
ponent to update from the list of all available compo-
nents. In the randomized asynchronous linear solvers
proposed by others to date, this random selection is al-
ways done using either uniform random number gener-
ation, or with a probability proportional to a row norm
of the matrix 𝐴. Leventhal and Lewis (2010) cite Fourier
analysis as an application area that can benefit from this
type of weighting; however, there is no reason not to ex-
pect improved behavior for an arbitrary problem. The
authors have proposed in Coleman, Jensen, and Sosonk-
ina (2019) to use the non-uniform distributions in the
asynchronous Jacobi iterative method. In this work, ef-
ficient implementations of such an iterative method are
investigated.

3.2 Southwell Algorithm
The Southwell algorithm (Southwell, 1946) works simi-
larly to Jacobi by relaxing a single equation at a time, but
chooses the equation with the largest local contribution
to the residual. For a given row 𝑖, this local contribution
is defined to be

at iteration 𝑘. This difference allows the Southwell al-
gorithm to often converge in fewer iterations than Jaco-

Algorithm 2 Generic Randomized Linear Solver
1: for each processing element do
2: for until convergence do
3: Pick using a given proba-

bility distribution
4: Read the corresponding entries of
5: Perform the relaxation for equation
6: Update the data for
7: end for
8: end for

bi, but raises the expense of computing an update since
the local residuals need to be stored and ranked at each
iteration. After a given iteration, the Southwell algo-
rithm chooses the component that contributes the most to
the global residual; thus, the algorithm ranks the resid-
uals from largest to smallest. Using the insight from the
Southwell algorithm, the idea behind the randomized lin-
ear solvers developed here is for each processor to select
the next component for updating randomly, using a dis-
tribution that more heavily weights selection of compo-
nents that contribute more to the global residual. Pseu-
do-code for a randomized variant is provided in Algo-
rithm 2. The key difference of the present work is that
here non-uniform distributions in Line 3 of Algorithm 2
are investigated.

In an effort to simulate the effect of the Southwell al-
gorithm using randomized asynchronous solvers, the lo-
cal residuals associated with each equation (or block of
equations) are ranked and sorted, and the selection of the
next equation (i.e., component) to update is performed
using a non-uniform distribution that forces the random
selection to pick components with larger local residuals
more frequently. The goal behind the proposed modifi-
cation is that relaxing the components with a more sig-
nificant contribution to the global residual may reduce
the total number of iterations required. Motivation for
this comes from a myriad of different studies, see for in-
stance Nutini et al. (2015) that shows that for some cas-
es (Gauss-)Southwell selection can converge faster than
uniform random selection for coordinate descent. In gen-
eral, the improvement in convergence will have to be
shown to be significant enough to offset the extra com-
putational and communication cost associated with stor-
ing and ranking all of the local residuals. To help off-
set the increased computational expense, the periodicity
with which the sorting and ranking procedures are done
is experimented with since it contributes directly to the
overall efficiency of the algorithm.
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4 Asynchronous Solver Design with
Non-Uniform Distributions
The focus here is initially on the potential performance
of different randomized asynchronous linear solvers
through a series of tests in MATLAB® (Section 4.2),
followed by the descriptions of two shared-memory al-
gorithms, a block-based (Section 4.3) and a novel row-
based (Section 4.4).

4.1 Problem Description
This work examines the asynchronous Jacobi relaxation
algorithm for solving finite-difference discretizations of
Partial Differential Equations (PDEs) on a regular grid.
In science and engineering, PDEs mathematically model
systems in which continuous variables, such as temper-
ature or pressure, change with respect to two or more
independent variables, such as time, length, or angle
(Smith, 1985). The specific problem under study here is
Laplace equation in two dimensions:

where the two-dimensional finite-difference discretiza-
tion uses Dirichlet boundary conditions. This PDE,
which is a fundamental equation for modeling equilibri-
um and steady state problems, is also used in more com-
plex problems based on PDEs. Equation (3) may be dis-
cretized such that a finite difference operator computes
difference quotients over a discretized domain. For ex-
ample, the two-dimensional discrete Laplace operator

approximates the two-dimensional continuous Laplacian
using a five-point stencil (Lindeberg, 1990). From this, a
discretized version of the Jacobi algorithm

may be applied to solve a two-dimensional sparse linear
system of equations (Strikwerda, 2004). Indices 𝑙, 𝑚,
and 𝑘 define discrete grid nodes in two dimensions and
the iteration number, respectively, for updating the dis-
cretized solution vector 𝑣.

In the particular instance of this 2D Laplacian prob-
lem, as solved with the Jacobi method here, the grid of
800 × 800 is used to obtain experimental results, the
Dirichlet boundary conditions are 100, 0, 75, and 50 for
the top, bottom, left, and right boundaries, respective-
ly; the solution vector 𝑣 is initilalized to 0 in each non-
boundary grid point, and the right-hand side vector 𝑏 is

equal to the initial 𝑣.

4.2 Proof-of-Concept
Preliminary experiments are performed using MAT-
LAB® to demonstrate the improvement in convergence
with Southwell and with non-uniform component selec-
tion, compared with Jacobi and with uniform component
selection, for the problem tested in this work. As an ex-
ample of potential convergence rates, Figure 1 shows the
progression of the residuals over the first 10,000 iter-
ations when solving the two- and three-dimensional fi-
nite-difference discretizations of the Laplacian over a 10
× 10 and 10 × 10 × 10 grids, respectively. Here, the four
solution methods used are the traditional synchronous
Jacobi algorithm, a traditional Southwell algorithm, and
two randomized linear solvers: one choosing the compo-
nent to update using a uniform random distribution, and
another using an exponential random number distribu-
tion with the parameter λ = 2. Note that the convergence
of the randomized linear solver using the uniform distri-
bution is slightly inferior to traditional solvers and to the
one with exponential distribution. The latter performs on
par with the Southwell, both in the 2D (Figure 1a) and
3D (Figure 1b) cases.

4.3 Block-based Algorithm
The following block-based algorithm design has been in-
troduced in Coleman, Jensen, and Sosonkina (2019) and
is provided here as the reference for a wider performance
analysis and comparison with the novel, row-based, al-
gorithm. In the task-based asynchronous solver, a thread
chooses a block of grid rows to update by sampling
from a distribution. The number it draws corresponds
to an index in a list of blocks, ranked in order of de-
scending component residuals. For example, if a thread
draws the number zero from the distribution, it will up-
date the block-row of components with the largest resid-
ual, assuming that block is not being updated by anoth-
er thread. In the case that a thread selects a block that is
already being worked on by another thread, the select-
ing thread searches sequentially either up or down in the
rankings until it finds an available block.

Initially, block residual rankings are assigned via a
natural ascending ordering (see Figure 2). A single
thread, denoted the residual ranking thread, is tasked
with computing the component residuals, sorting the
residual rankings, and updating the global ranking list
that all the threads use to select blocks for updating. Note
that using a single thread leads to a more accurate glob-
al ranking list and does not result in a bottleneck for a
moderate number of threads. For large-scale distributed
implementations, a different ranking procedure has to be
developed.

In this work, the residual ranking thread performs
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(a) 2D problem (5-pt stencil, 10 × 10 grid). (b) 3D problem (27-pt stencil, 10 × 10 × 10
grid).

Figure 1. Residual (𝑟 / 𝑟0) progression for the first 10,000 iterations of four stationary methods solving the 2D (a)
and 3D (b) Laplacian.

Figure 2. Block assignment used in the 800 × 800 grid
of the example problem. The blocks consist of all com-
ponents in a five-row section of the grid. This incorpo-
rates 4000 of the 640,000 grid points into each block re-
sulting in blocks.

ranking and list-updating after every five iterations of
the linear system solver. Essentially, Algorithm 2 may be

modified to include ranking periodicity τ as shown in Al-
gorithm 3. This ranking period needs to be chosen judi-
ciously, depending on several factors, such as the num-
ber 𝑚 of relaxations performed, the number of threads
used, and the number of block-rows to rank. Here, τ
= 5 was found experimentally to mitigate the ranking
overhead for the obtained number of iterations to con-
vergence, while the number of relaxations was varied. A
more detailed investigation of the ranking periodicity is
warranted and left as future work.

4.4 Row-based Algorithm
Algorithm 4 illustrates a novel row-based method. Sim-
ilarly to Algorithm 3, the master thread periodically,
every τ relaxations, ranks and sorts the rows (line 20).
However, there are several important distinctions be-
tween the two algorithms, due to which Algorithm 4
exhibits better performance. In line 10, a thread uses
a probability distribution function 𝑓 to select a single
target row to relax instead of a block of rows shown
in Algorithm 3, and then transitions from the current
(start) row r ̃ to the target row 𝑟𝑣 by relaxing all the
rows between r ̃ and 𝑟𝑣 in their natural ordering, instead
of jumping to the target row to relax next as done in
the block-based implementation (Algorithm 3). Further-
more, while making this transition, a thread may move
inward the domain or toward its top or bottom boundary
rows, depending on the direction of the shortest distance
𝑑𝑣 from the current start row to the target (see Equation
(4)).
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Algorithm 3 Block Variant of Randomized Linear
Solver

1: Input: ranking period , number of block-rows ,
number of block-relaxations , probability distrib-
ution function

2: Set counter for all block relaxations
3: for each thread do
4: for until convergence do
5: if thread is master and

then
6: Rank and sort block residuals
7: end if
8: Pick using
9: Perform relaxations on block

10: Update the data for
11:

12: end for
13: end for

where 𝑛 is the total number of rows in the subdomain,
and the direction of progression to the target is toward
and across the boundary if the first term in Equation (4)
is taken as 𝑑𝑣; otherwise, the boundary is not crossed.
The former is also chosen when the terms are equal.
Then, in line 13, the nextr function assigns the next
row number to consider by decrementing or increment-
ing the row number r ̃ for the boundary or non-boundary
progression direction, respectively; and performing cir-
cular shift of the row numbers if they reach the boundary.
Note that fewer than 𝑑𝑣 rows may be relaxed if certain
rows in the path towards the target row are not free, i.e.,
they are already being relaxed by another thread at the
time of their consideration, as specified by the condition-
al statement in line 14. A shared array of size 𝑛 main-
tains row availability, in which a threads "locks" the row
number while it relaxes that row and releases the lock
upon finishing the operations in lines 15–20.

The use of the shortest distance is motivated by an
attempt to adhere to the ranking order of rows while also
relaxing in the neighborhood of the target row; thereby,
making the transition to the target smoother. Addition-
ally, in a distributed-memory environment, the ability to
more frequently relax boundary rows may facilitate a
better data movement among subdomains possibly lead-
ing to a faster convergence. Another distinction between
the block-based implementation and the row-based one
is that the row-based performs the ranking of rows using
row-sum differences instead of residuals. In particular
(see line 17), after every row r ̃ relaxation, a thread per-
forms a summation σr ̃ of the absolute values of all the

Algorithm 4 Row-Based Variant of Randomized Linear
Solver

1: Input: probability distribution function , ranking
period , number of rows

2: Set row-sum differences
, where is

row-sum difference between adjacent relaxations of
row and is the largest double-precision
number

3: Set row ranking as ascending natural ordering
4: Set sorted rows
5: Set counter for all row relaxations
6: for each thread do
7: Set for initial thread target

row
8: for until convergence do
9: Set previous target as new start row

10: Set target row from sorted rows using
11: Compute shortest distance as in Equation

(4)
12: for do
13: Assign next row as de-

scribed in Section 4.4
14: if is free then
15: Perform a relaxation of
16: Update the data for
17: Compute row-sum difference as in

Equation (5)
18: Set
19: if thread is master and

then
20: Update ranking and sorted rows

based on
21: end if
22: end if
23: end for
24: end for
25: end for

components in r ̃ and updates the row-sum difference σr ̃

where is the sum taken after the previous relaxation
of r.̃ This difference σr ̃ is assumed to be decreasing be-
tween the two adjacent relaxations and arbitrarily small
when the algorithm has converged. A strong linear rela-
tionship has been observed between the row difference
method rank and the row residual rank during the entire
convergence process. Table 1 presents a small sample of
representative correlation coefficients 𝑅 at regular inter-
vals throughout a sample calculation, which quantify the
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Table 1. Comparison of the row difference method rank with the row residual rank,
for all rows, at various row ranking iterations during the calculation. Correlation coef-
ficient 𝑅 quantifies magnitude and direction of relationship.

Row Ranking Iteration 0 20𝑒3 40𝑒3 60𝑒3 80𝑒3 100𝑒3 120𝑒3 1400𝑒3

𝑅 0.99 0.99 0.96 0.95 0.97 0.96 0.97 0.98

Table 2. Experiment parameters for Block-based and Row-based implementations run
on Rulfo and Wahab platforms (column Hardw). The number of OpenMP® threads is
shown in column Thrds. The problem (grid) size is shown in column Grid. The number
of rows considered by a thread at a time is given in column Block. Input tolerance for
the algorithm convergence is provided in column Tol, while the ranges of the normal (μ,
σ) and exponential λ distribution parameters are provided in columns Norm and Expo, re-
spectively.

Hardw Thrds Grid Block Tol Norm Expo

Block-based Rulfo 63 800 × 800 5 1𝑒-3 (16–54,8) 0.01–0.8

Block-based Wahab 40 800 × 800 5 1𝑒-3 (16–40,8) 0.01–0.8

Row-based Wahab 40 800 × 800 1 1𝑒-3 (80–400,40) 0.002–0.16

magnitude and direction of this relationship. Of the hun-
dreds of thousands of computed correlation coefficients,
the minimum and mean coefficients are 0.77 and 0.96,
respectively, with a standard deviation of 0.02. Using
this difference instead of residuals decreases the com-
putational overhead of ranking the rows. In particular,
finding the row difference requires about 7 times fewer
floating point operations per iteration than when using
the row residual for this problem. Note, that, while it is
shown that the difference-ranking method works for this
sample problem, it has not been tested with other types
of problems.

5 Implementation Results
The block-based and row-based algorithms are imple-
mented and tested on two shared-memory computing
platforms. For both platforms and both implementations,
results show that the calculation time decreases using
non-uniform distributions, compared with a uniform dis-
tribution. Additionally, the row-based implementation
shows a decrease in iterations, compared with Gauss-
Seidel.

5.1 Experimental Design
The experiments using OpenMP® are conducted on two
computing platforms at Old Dominion University1. The
Rulfo system has an Intel® Xeon Phi™ Knight's Landing
7210 model processor with 64 cores running at 1.30 GHz

and 112 GB of DDR4 physical memory used as DRAM
in these experiments. One thread per core is utilized,
with one core reserved for interfacing with the operat-
ing system, resulting in 63 computational threads for the
experiments in Section 5.2. On the Wahab system, a sin-
gle node of the cluster is utilized, containing two In-
tel® Xeon Gold 6148 CPUs each with 20 physical cores
and 376 GB of DDR4 memory. The code uses standard
C++ routines for sorting residuals and generating ran-
dom numbers, with the default parameters and the built-
in distributions. Experimental parameters are presented
in Table 2.

5.2 Block-based Implementation on Rulfo
For block selection, three different distributions are test-
ed. The uniform distribution is used as a control; a thread
may select any block with equal probability. The normal
distribution is used to examine the effects of targeting
different segments of blocks in the rankings, i.e., blocks
with lower ranks and higher residuals versus blocks with
higher ranks and lower residuals. This is achieved by
varying the mean parameter μ while keeping the stan-
dard deviation σ fixed in the normal distribution. The ex-
ponential distribution, with the mode λ close to zero, will
tend to sample lower-ranked blocks.

For both normal and exponential distributions, the al-
gorithm convergence may be observed in Figure 3 and
Figure 4, respectively. In the figures throughout Section
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(a) Convergence history. For a given μ, '-1',
…, '-5' enumerate the runs.

(b) Time-to-solution: minimum, average, and
maximum timings over 5 runs.

Figure 3. BBI convergence for normal distribution.

5, the term Recording Iteration points out that the data is
recorded by a thread every 1,000 iterations. For the nor-
mal distribution, it may be observed in Figure 3a that the
convergence rate depends strongly on μ: Its smaller val-
ues (up to μ = 46) lead to rapid convergence whereas, at
μ = 46, the convergence sharply deteriorates. This may
be also observed when considering the time-to-solution
in Figure 3b. Due to very slow convergence, at large μ
values, the normal distribution becomes extremely non-
competitive with the uniform distribution, which tim-
ing is shown as red dashed line in Figure 3b. Figure 4a
shows that the parameter λ for the exponential distribu-
tions does not have as much an impact on performance
as the parameter μ does so for the normal distribution
runs. As λ moves farther away from zero, however, it
hinders convergence and the exponential distribution re-
sults in slower timings than those obtained with the uni-
form distribution as seen in Figure 4b. Once the best pa-
rameter choices are found for normal and exponential
distributions, their performances compare favorably to
the uniform distribution (Figure 5), and up to 10% and
13% fewer iterations are observed, respectively.

Figure 6 provides a more detailed explanation for
performance differences based on the selection of μ. In
particular, Figure 6a and Figure 6b depict that the or-
dered component residual values for μ equal to 16 and 44
are nearly indistinguishable. However, when μ increases
to 48 (Figure 6c) and then again to 52 (Figure 6d) resid-
uals of the lowest-ranked blocks decrease slowly while
the residuals of all other blocks decrease more quickly.
Note that all the block-based implementation (BBI) ex-

Figure 5. BBI convergence history comparisons among
distributions in the best case.

periments use 8 for σ, which is appropriate for all the
chosen μ ranges of 16 to 54 on Rulfo and 16 to 40 on
Wahab.

Figure 7a and Figure 7b show that, for the minimum
and maximum values of λ, respectively, the component
residual decrease is balanced among the component
ranks as iterations progress.

5.3 Row-based Implementation on Wahab
The results of the BBI show that non-uniform probability
distribution functions may be used to efficiently select
components to update, leading to convergence for the
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(a) Convergence history. (b) Time-to-solution: minimum, average, and
maximum timings over 5 runs.

Figure 4. BBI convergence for exponential distribution.

sample problem used in this work. However, relaxing
blocks of rows asynchronously tends to cluster errors on
block boundaries, and thereby hindering convergence. A
row-based implementation (RBI) has been introduced to
mitigate this problem. Here, the RBI solves the same
sample problem in shared memory as BBI (see Section
5.2). Recall that RBI does not consider blocks of rows
to be relaxed by a single thread. Instead, a thread selects
only a single row to relax at a time.

For row selection, as with the BBI, the same three
distributions are tested. Again, the uniform distribution
is used as a baseline for comparison with the normal
and exponential distributions. Similar to the BBI ex-
periments, the normal and exponential distributions are
geared to consider different ranges of row numbers by,
respectively, keeping the standard deviation σ parameter
fixed and the parameter λ close to zero. Figure 8a shows
the diminishing row differences as the system converges,
and the disparity between the rows with the least and
greatest differences decreases. In Figure 8b, initially the
lowest-index rows have the greatest differences since
these are the boundary rows, and in effect, the greatest
discontinuity initially is between the top boundary and
the first row of grid points (see Section 4.1). Conversely,
the least discontinuity initially is between the bottom
boundary and the last row of grid points. These respec-
tive discontinuities are reflected in the row component
differences of consecutive iterations, i.e., the top row ini-
tially changes quickly, while the bottom row changes
slowly. However, as the calculation progresses, the
change in the first rows decreases. For most of the calcu-
lation, the middle rows experience the most change.

For the normal distribution, Figure 9 shows the ef-
fects of choosing appropriate and excessively large val-
ues of the normal distribution mean parameter μ, values
of 80 and 400, respectively. Note that the normal distrib-
ution standard deviation parameter σ is kept at 40, which
is appropriate for the range of μ values considered for
RBI here. Compared with Figure 9a, Figure 9b shows
increased iterations, greater row-difference disparity be-
tween bottom and top-ranked rows, and increasing row
differences for ranks 300–400 during the first 1,000 iter-
ations.

Similarly to Figure 8b, Figure 10 shows the rank
changes during the convergence processes albeit here
for the normal distribution for the same parameters as
in Figure 9. In Figure 10a with μ = 80, the middle rows
are targeted so frequently that the ranks of the rows with
the greatest differences are pushed outward, toward the
first and last ranks, much more than what is observed
for the uniform and normal with μ = 400 distributions
(cf. Figure 8b and Figure 10b, respectively). For μ = 400,
because the lower-difference rows are targeted more of-
ten, the group of high-ranked rows (shown as the middle
yellow band) does not shift ranks to the extent seen with
the uniform distribution in Figure 8b, and hence, is up-
dated fewer times, which leads to inferior convergence.
This pattern is expected to continue for μ > 400.

For the exponential distribution, Figure 11 and Fig-
ure 12 show the progression of row differences and rank-
ings, respectively. Here, both small and large values of λ
provide similar results and are equally effective, on par
with good values of μ when using the normal distribu-
tion. The convergence history is presented in Figure 13
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(a) μ = 16 (b) μ = 44

(c) μ = 48 (d) μ = 52

Figure 6. Block-row residuals for calculations using normal distributions.

for the three distributions and their respective parame-
ter choices considered for RBI. As expected, for the ex-
ponential distribution and the normal distribution with
smaller μ of 80, the residual decreases more quickly than
with the uniform distribution, whereas with the normal
distribution parameter μ = 400, the residual decreases the
most slowly (see Figure 13).

5.4 Performance Comparison of Block- and
Row-based Implementations
Here, block- and row-based implementations are mu-
tually compared on the same platform, Wahab, as to
their number of relaxations and time to converge for a
range of non-uniform distribution parameters μ and λ, as

shown in Table 2.
Note that the distribution parameters in the row-

based implementation differ from those used by the
block-based one, which reflects the sorted array sizes
and different convergence behavior of the implementa-
tions. In particular, for the given test problem, the BBI
has 160 entities (blocks) to sort, while there are 800 en-
tities (rows) to sort in the case of RBI. The difference in
convergence behavior is especially evident when com-
paring results from the two implementations when both
use normal distributions to select components. In Figure
14a, for BBI, there is a distinct difference in results
for μ = 44 and μ = 46. For RBI, Figure 14b shows a
smoother transition between good and poor normal dis-
tribution parameters. Note that good and poor, respec-
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(a) λ = 0.01 (b) λ = 0.8

Figure 7. Block-row residuals for calculations using exponential distributions.

(a) Row Differences. (b) Row Rankings.

Figure 8. Progression of row differences and rankings using a uniform distribution.

tively, are termed so because they yield the calculation
times faster and slower than those for the uniform distri-
bution test cases. In particular, the poor distribution pa-
rameters are those starting with the first μ that yields a
significant jump in the calculation time; and this percent-
age increase for RBI is taken to be comparable with the
one in BBI. By comparing the results for the μ values
in Figure 14a and Figure 14b, it is seen that the RBI tol-
erates a much higher relative value for μ than the BBI
does so before significantly degrading the performance.

For example, while μ = 46 is already a poor choice for
the BBI, μ = 230 (which is equal to 46 × 5 rows in a
block) is still well within the range of good parameters
for the RBI.

In addition, Figure 14a and Figure 14b compare the
block- and row-based implementation iterations with the
iterations of serial Gauss-Seidel (shown as red horizontal
lines), respectively, to converge for the sample problem.
The BBI cannot converge in fewer than serial Gauss-Sei-
del component relaxations even with the best distribu-
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(a) μ = 80 (b) μ = 400

Figure 9. Progression of row differences using normal distributions.

(a) μ = 80 (b) μ = 400

Figure 10. Progression of row rankings using normal distributions.

tion parameters. The RBI, however, converges in about
10% fewer component relaxations than serial Gauss-Sei-
del, using non-uniform distributions with appropriate pa-
rameters. This happens consistently, although it has been
shown theoretically that more component relaxations
may be required when threads update components asyn-
chronously (Avron et al., 2015). A better convergence in
the RBI compared with that in BBI may be attributed
to the (fine-grained) ranking of rows rather than blocks
and to relaxing all the rows on the path from the current

and the selected target one. Such a relaxation process
leads to a smoother transition between rows and possibly
to relaxations of more rows by a thread at a time than
those contained in a block of the BBI. Although the
row-based implementation ranks and sorts more entries
than the BBI does so, the former has faster time-to-
solution (see Figure 18) and is not hindered at large
scales—where distributed implementations are a
must—because ranking and sorting will be performed
within each node independently.
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(a) λ = 0.02 (b) λ = 0.16

Figure 11. Progression of row differences using exponential distributions.

(a) λ = 0.02 (b) λ = 0.16

Figure 12. Progression of row rankings using exponential distributions.

Complementing the convergence comparisons of
BBI and RBI from Figure 14, Figure 15 demonstrates (as
vertical lines in each bar) a greater variability in how of-
ten each block in BBI may be relaxed compared with
each row relaxation in RBI. This metric bears signifi-
cance for the non-uniform distributions since they may
"neglect" certain components to relax often enough to
hinder convergence, as has been shown earlier in Section
5, and thereby making a proof of convergence more dif-
ficult.

Figure 16 and Figure 17 compare BBI and RBI as to
which parts of the problem grid are relaxed more times
when good or poor μ is used, respectively. For the for-
mer, Figure 16 shows not only that both implementations
emphasize the relaxation of the middle rows, away from
the fixed top and bottom boundaries, but also that the
RBI places greater emphasis on the rows near the top
and bottom boundaries, and less emphasis on the mid-
dle rows, compared to the BBI. In particular, about 15%
of component selections result in a boundary-crossing
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(a) Block-based implementation. (b) Row-based implementation.

Figure 14. The total number of all the grid-component relaxations until convergence, for different probability distrib-
utions and parameters. The red lines refer to the number of component relaxations for serial Gauss-Seidel.

(a) Block-based implementation. (b) Row-based implementation.

Figure 15. The average number of (a) block and (b) row relaxations required to converge for different probability
distributions and parameters for the two implementations. The vertical lines in each bar show the standard deviation

of the number of row relaxations among all rows.

event in the row based implementation, which provides
for relaxing all the rows more uniformly. With poor dis-
tribution parameters, Figure 17 shows a different behav-
ior of the RBI from the one in Figure 16. Now, the RBI
relaxes boundary rows more frequently than it does so
for the innermost rows. In particular, some of the inner
rows are now relaxed about as many times as for good μ

but the boundary rows are relaxed more frequently lead-
ing to an overall higher number of iterations to converge.
Generally, the RBI permits more frequent relaxation of
boundary rows, compared with the BBI. Note that the
frequency of boundary-row relaxation stays low for BBI
given either value of μ (cf. Figure 16 and Figure 17).
Such a beneficial behavior of RBI is expressed in line 13
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Figure 16. The number of block (a) or row (b)
relaxations required to converge with good
normal distribution parameters.

Figure 17. The number of block (a) or row (b)
relaxations required to converge with poor
normal distribution parameters.

Figure 13. Change in residual throughout the calcula-
tion, for each distribution.

of Algorithm 4, in which the nextr function directs a
thread to or from a boundary row according to the short-
est distance (line 11) as determined by Equation (4).

Figure 18 shows that RBI decreases calculation time
(Figure 18b) compared with BBI (Figure 18a) for all the
distributions on the Wahab cluster. Furthermore, a 10%
convergence-time reduction is observed for the row-
based implementation using normal and exponential dis-
tributions with good parameter choices, as compared to
a uniform distribution. Figure 18b shows a gradual in-
crease in calculation time for increasing values of μ be-
yond 200, similar to the gradual increase in numbers of

relaxations seen in Figure 14b and Figure 15b. For BBI
on the Wahab platform (Figure 18a), the results show a
jump in calculation time when the normal distribution is
used, which is also observed on Rulfo (cf. Figure 3b) al-
beit at a larger μ value of 46. On Wahab, the BBI thresh-
old μ is 40, which suggests that, for the normal distribu-
tion shared-memory implementation, good parameter se-
lection is platform-dependent, as expected. In particular,
having more threads results in smaller size blocks, which
may mitigate poor μ selection in the BBI.

In addition to the performance benefit seen with the
row-based implementation, Figure 19 and Figure 20 il-
lustrate that the RBI produces a solution with the resid-
ual values more uniformly dispersed among all compo-
nents. For each implementation, the plots display the two
runs with the smallest and largest maximum component
residuals, out of a set of ten runs that use the exponential
distribution with λ = 0.05 for BBI and λ = 0.01 for RBI.
The BBI gives a mean maximum component residual of
4.3𝑒-11, with a standard deviation of 2.2𝑒-11, while the
row-based implementation gives a mean of 1.0𝑒-11 and a
standard deviation of 1.6𝑒-12. Note that the largest max-
imum component residual produced by the RBI, as seen
in Figure 20b, is about half the size of the smallest com-
ponent residual produced by the BBI, as seen in Figure
19a. Observe also that the variations between runs are
less for RBI than they are for BBI.

6 Summary and Future Work
This paper develops and tests a novel implementation
of a randomized asynchronous iterative solver that uses
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(a) Block-based implementation. (b) Row-based implementation.

Figure 18. Wahab calculation times for each implementation and all three distributions. Note the λ-labeled axis per-
tains to the exponential distribution trajectory while the μ-labeled axis refers to the normal distribution trajectory.

(a) Smallest. (b) Largest.

Figure 19. BBI solution component residual values from the runs with the smallest and largest maximum component
residuals, for exponential distribution, λ = 0.05.

non-uniform distributions. Complementing a traditional
approach of block-row updates, this implementation
blends aspects of different solvers and relies on a finer
granularity (row-based) of grid component updates. As a
result, the row-based implementation (RBI) improves on
the block-based one in multiple aspects: solution qual-
ity, the number of iterations required for convergence,
and the calculation time. The RBI also supports a wider
range of parameters that yield fast convergence for the

normal distribution.
For the two asynchronous randomized solver imple-

mentations, block-based and novel row-based, this pa-
per demonstrates a benefit of using a non-uniform dis-
tribution in prioritizing component updates. Both BBI
and RBI with non-uniform distributions converge 10%
faster than their counterparts with the uniform distribu-
tion do so. The row-based implementation may also con-
verge with 10% fewer iterations than serial Gauss-Sei-
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(a) Smallest. (b) Largest.

Figure 20. RBI solution component residual values from the runs with the smallest and largest maximum compo-
nents residuals, for exponential distribution, λ = 0.01.

del, which is not observed for the block-based imple-
mentation.

A further investigation into the ranking periodicity
and technique for sorting the residuals is warranted in
the scope of studying the overall efficiency of future ran-
domized asynchronous linear solver variants. Continu-
ing to optimize the implementations will improve their
ability to be used either in a standalone capacity or as
part of another solution scheme, such as preconditioners
for Krylov subspace methods or as smoothers in multi-
grid methods. Additionally, testing on a more diverse
problem set may reveal further benefits to the solver by
dynamically focusing on the components that are fur-
thest from convergence.
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